AD-A267 054
ITAMIA DR e

RL-TR-93-38
Final Technical Report
April 1993

KBSA CONCEPT DEMO

Center for Strategic Technology Research Andersen Consulting

ELECTE
s JuL201993

—

Michael DeBellis, Kanth Miriyala, Sudin Bhat,
William C. Sasso, and Owen Rambow

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
“°r Force Materiel Command
93— 2 iss Air Force Base, New York

IWMIMWHIIIM . . 1t 0J%

[AN W

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

Although this report references limited documents listed below, no
limited information has been extracted:

RADC-TR-88-205, Knowledge Based Requirements Assistant, October 1988, Distri-
bution limited to U.S. Government agencies and their contractors; critical
technology; Oct 88. Other requests must be referred to RL/C3AB, 525 Brooks Rd,
Griffiss AFB NY 13441-4505.

RADC-TR-89-98, KBSA Performance Estimation Assistant, August 1989, Distri-~
bution limited to U.S. Government agencies and their contractors; critical
technology; Aug 89. Other requests must be referred to RL/C3AB, 525 Brooks Rd,

Griffiss AFB NY 13441-4505.

RADC-TR-90-115, Analysis of Improved Many-on-Many, April 1990, Distribution
limited to U.S. Government agencies only ; test and evaluation; Apr 90. Other
requests must be referred to RL/C3AA, 525 Brooks Rd, Griffiss AFB NY 13441-4505.

RADC-TR-90-418, Knowledge-Based Project Management Assistant for ADA
Systems, December 199G, Distribution limited to U.S. Government agencies and
their contractors; critical technology; Dec 90. Other requests must be referred
to RL/C3AB, 525 Brooks Rd, Griffiss AFB NY 13441-4505.

RL-TR-93-38 has been reviewed and is approved for publication.

APPROVED: C_é://%d 2, 27/ 7(,7 < Zﬂ oﬁ A

DONALD M. ELEFANTE
Project Engineer

FOR THE COMMANDER: W
JOHN A. GRANIERO

Chief Scientist
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CA) Griffiss AFB NY 13441. This will assist us in maintaining

a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | owis n6 ovo1es

Pubic reporting burden for this collection of formation s estimated to average 1 hour per response, iNcuding the time for reviewing INStTUCtIoNS, Searching existing Gata Sowces
gathering and martaining the data needed, and compieting and reviewing the colection of iformation. Send comments regarding this tarden estimate of any other aspect of (s
colection of inffoarmation, iIncluding suggestions for reducng this burden, to Washington Headguanters Services, Drectorate for iformation Cperations andReports 1215 Jeftersor
Davis Highway, Sukte 1204, Arington, VA 22202-4302, and to the Office of Managerment and Budget, Paperwork Reduction Project (0704-0188), Washengton, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1993 Final Sep 89 - Sep 92

4. TITLE AND SUBTITLE 5. FUNDNING NUMRFRS

KBSA CONCEPT DEMO C - F30602-55-C-0160

PE - 6372fF

6. AUTHOR(S) PR - 2532

Michael DeBellis, Kanth Miriyala, Sudin Bhat, 5% _ g;

William C. Sasso, Owen Rambow

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Center for Strategic Technology Research REPORT NUMBER

Anderson Consulting

100 South Wacker Drive, E9E

Chicago IL 60606

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (C3CA) AGENCY REPORT NUMBER

525 Brooks Rd RL-TR-93-38

Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Donald M. Elefante/C3CA/(315)330-3565.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlinmited.

13. ABSTRACT Madmum 200 words)
The Knowledge-Based Software Assistant (KBSA) Concept Demonstration System project had
three main goals:

(1) Integrate KBSA technology concepts developed up to the time of the effort into
a single life cycle processing system. Also, provide additional insight to guide the
direction of later KBSA contractual efforts. In particular, provide insights into the
requirements for a) an integrated high-to-medium-level interface suite and b) high-to-
medium-level process mediation and coordination.

(2) Gain leverage from current industry research in, or related to, KBSA technology
areas.

(3) Provide a vehicle for technology transfer to complement the efforts of the KBSA
Technology Transfer Consortium.

This report describes the work accomplished under the project and presents its sugpes-—
tions for future work in the area.

14. SUBJECT TERMS 15 NUMBER OF PAGES 156G
Automatic programming, artificial intelligence, knowledge-based
software, software engineering, systems engineering 16 PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION {19. SECURITY CLASSIFICATION |20. LUMITATION OF ABSTRACT
OF REPORT OF THiS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 798 (Hev & 8%)

Prescribed by ANSI St 739 18
298-102

1. Introduction

The Knowledge-Based Software Assistant (KBSA) Concept Demonstration
System (Concept Demo) project, sponsored by Rome Laboratory, USAF, took
place over three years (between September, 1989 and September, 1992).

1.1 Goals of the Concept Demo Project

The major goals of the project, as defined in secticn 1.3 of its Statement of Work,
were these:

¢ Integrate KBSA technology concepts developed thus far into a single life
cycle processing system. This work will provide additional insight to
guide the direction of phase 2 and phase 3 KBSA contractual efforts ...
particularly insights into the requirements for (a) an integrated high-to-
mediume-level interface suite and (b) high-to-medium-level process
mediation and coordination.

* Gain leverage from current industry research in, or related to, KBSA
technology areas.

* Provide a vehicle for technology transfer [to] complement the efforts of
the KBSA Technology Transfer Consortium.

1.2 Structure of the Final Report

This report describes the work accomplished under the project and presents its
suggestions for future work in the area. It consists of six sections:

1. Introduction (this section);

2. Overview of the Concept Demonstratioh System;

3. Description of the Concept Demo Archifecture for Intelligent Assistance;
4. Formal Validation in the Concept Demdnstration;

5. Concept Demonstration Software Development Process Model;

6. Lessons Learned and Issues Facing Future KBSA Efforts;

7. Bibliography; and

A. Appendix with Technology Transfer Survey Feedback.

Section 2 will describe how the Andersen Cons;“ulting’has drawn upon many
sources, including earlier KBSA work, leadingKBSE research from industry and
academe, and commercial technology, practice, and insight to build the Concept
Demo. Section 3 will then discuss, in greater detail, the Concept Demo’s process
mediation and coordination mechanism and the mixed-initiative approach used
in its interface. These capabilities support and enact the pracess model described
in section 5. Section 4 describes the evaluation of formal software validation
technology undertaken in an extension to the original contract effort. In

1-1

conclusion, Section 6 will relate the current state of Concept Demo technology
transfer efforts, and will present the lessons we have learned as insight for future
KBSA research program efforts.

Please note that section 4 contains its own bibliography.

1.3 Acknowledgments

The authors of this report wish to acknowledge the valuable contributions made
to the Concept Demo project by the following organizations and people:

* Rome Laboratory: Don Elefante, Doug White, Frank Sliwa, Nancy
Roberts, Joe Carozzoni, and Lou Hoebel.

¢ Andersen Consulting: Bruce B. Johnson, Gilles Lafue, W. Michael

Evangelist, Wojtek Kozaczynski, Chunka Mui, Gui Cabral, Stan Letovsky,

Gerry Williams, Steve Wagner, Gadi Friedman, Anoop Kumar, and Inessa
Lekakh.

¢ Information Sciences Institute: W. Lewis Johnson and Martin Feather.
* CoGenTex, Inc.: Tanya Korelsky and Owen Rambow.

¢ Kestrel Institute: Richard Jullig, Marilyn Daum, Xic Lia Xian, Doug
Smith, and Tom Pressburger.

- @ Reasoning Systems, Inc.: Gordon Kotik and Scot Brooks.

and Professor Elliot Soloway of The University of Michigan.

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced 0O
Justification

By
Distribution{

Availability Codes

) Avail and/or
Dist Special

W‘"%

Ll ‘.l; ‘% '; ""?"v ‘;ih MC":‘}:‘?‘I 5

2. Overview of the KBSA Concept Demo System
2.1 Introduction

This section describes the architecture for the complete Concept Demo system.
We wished to reuse, where possible, previous KBSA software in developing the
system. The decision to reuse previous prototypes needed to be balanced against
other requirements to develop a well integrated, relatively robust system. The
first major design decision made in the project was what hardware/software
platform to build the Concept Demo on and how to leverage previous KBSA
prototypes. As part of this decision making process we acquired all the available
KBSA prototypes and experimented with them and with their support
environments — Software Refinery™, Socle, AP5/POPART, and the KBSA
Framework. Based on these experiments, we chose Software Refinery (or
Refine™ for short) on the Sun workstation as our primary’ development
environment. The reason for this decision was that unlike other KBSA support
environments, Refine was a commercial product and hence was more robust,
stable, and better integrated than non-commercial KBSA environments.

Our decision to use Refine implied that we would integrate Refine-based KBSA
prototypes (the PMA and Development Assistant) and reimplement
requirements and specification functionality from prototypes (KBRA, the
Specification Assistant, and Aries) built in other environments. Our development
of the Concept Demo system can thus be divided into two types of efforts:
integration and (re)implementation. Section 2.2 describes our work to integrate
existing KBSA prototypes and other related tools. Section 2.3 describes the
general framework and requirements/specification functionality we developed
in Refine.

2.2 Integration

Figure 2-1 shows a high-level data-flow diagram (DFD) for the complete Concept
Demo system. All of the process circles that have an underlined title are systems
that were developed separately from the Concept Demo project. Some of these
systems such as the CoGenTex text generator and the PMA have been modified
and extended as part of the Concept Demo. All of the process circles that do not
have underlined titles were developed as part of the Concept Demo project. The
system that required the bulk of the Concept Demo development effort was the
CD Framework. The CD Framework includes general functionality that spans the
complete life-cycle such as a wide-spectrum specification language, process
representation, and user-interface capabilities. The CD Framework is used as an
integration vehicle for the entire system and as a platform on which to build the
Concept Demo requirements and specification functionality. In this section we
discuss the systems that have been integrated into the Concept Demo via the CD
Framework.

Omnipage
Scan
hardcopies to

CD Framework -
Req/spec
functionality

Development &
project
management
tasks

Develop
requirements

Gist =>
ERSLa
translator

Regrofjp

Project
management

Develop Aries
Gist specs

Project
management
tasks

Algorithm
design & code
generation

Project
management
reports

Figure 2-1: High-level DFD for the Concept Demo System

2.2.1 Incorporation of Requirements Documents

The text entry capabilities in the CD Framework are limited to using Emacs as
part of the Refine environment. We wanted to also incorporate documents
developed using WYSIWYG text processing systems such as Microsoft Word™
and existing large requirements documents. To incorporate such documents, we
developed a translator that takes documents in Rich Text Format (RTF - a
WYSIWYG standard promoted by Microsoft) and translates them into the
hypertext format used in the Concept Demo. The RTF to Hypertext translator
uses heuristics developed in the TAO system [Swaminathan 92] to group
document paragraphs into hypertext nodes and sub-nodes based on the format
of the document (e.g., use of bold face, section numbering, etc.) The translator
has been used to automatically translate large documents such as the Hughes
radar tracking text specification used in the Development Assistant [Smith 91]
and the Concept Demo documentation [Andersen 92] into hypertext format.

2.2.2 Incorporation of Aries Gist Specifications

The Acquisition of Requirements and Incremental Elaboration of Specifications
(Aries) project [Johnson 90] was a follow on to the KBRA [Harris 88] and
Specification Assistant [Johnson 88a] projects. Aries developed an integrated
requirements and specification environment with features from the KBRA and
the Specification Assistant. Aries also explored specification reuse. We wished to

2-2

be able to utilize the large reusable specifications that were being developed as
part of the Aries project. Even though Aries was built in the AP5/Popart
environment and the Concept Demo was built in Refine, two developments
made it possible to build a translator from Aries Gist to the Concept Demo
specification language:

1) The Aries project developed a new version of Gist that used a syntax
similar to the Refine language.

2) The Concept Demo developed the Extended Refine Specification
Language (ERSLa) which extended Refine with constructs from Gist such as
invariants and demons. ERSLa is described in detail in section 2.3.1.2.

The Gist to ERSLa translator was developed by ISI as part of their sub-contract
on the Concept Demo project. It automatically translates approximately 80% of
Gist specifications into ERSLa. Type definitions, unary relations, binary relations,
and invariants can all be reliably translated from Aries Gist to ERSLa. Some
types of demons and procedures from Gist require manual translation. The Gist
to ERSLa translator was used to translate the large Aries upper model
specification into ERSLa as well as several smaller specifications in the air traffic
control and traffic light domains.

2.2.3 PMA Integration

As part of our requirements and specification functionality, we built an agenda
mechanism to keep track of problems and suggest solutions for evolving
requirements and specifications. We wanted this process guidance functionality
to be tightly coupled with the project-management functionality provided by
integration of the KBSA Project Management Assistant (PMA). Thus, the
integration of the PMA was done at the object level, instead of at the file level.
The essential PMA domain model is loaded as part of building the CD
Framework. The task objects used to represent individual development steps in
the CD requirements/specification environment are subclasses of the task class
used by the PMA. In addition, it is possible to develop subtask hierarchies that
start with PMA group level tasks and can be decomposed down to tasks that
represent individual development steps such as transformations. The Concept
Demo requirements/specification functionality can be built starting on a Lisp
image that has the PMA loaded. This allows the full functionality of the PMA to
be used on Concept Demo tasks.

The PMA has been extended by the integration of the CoGenTex text generator.
This is used to automatically generate project management reports from the PMA
knowledge-base. This work was done as a subcontract to the Concept Demo by
CoGenTex. The text generator consists of three parts: the generator shell,
developed previously by CoGenTex; the information specific to the application at
hand (the generation of reports for the PMA); and the Intermediate Knowledge

2-3

Representation Scheme (IKRS), which gives the text generator access to the
knowledge represented in the Concept Demo.

2.2.4 Generation of Project Management Reports

The application-independent generator shell was not altered as part of the text
generation effort for the PMA. It consists of two main components:

The realizer handles all English-specific sentence-level processing.

The sentence planner determines the form of the sentences that the realizer will
generate.

Furthermore, the generator shell contains code that interprets the macro-
language commands used to encode application-specific information for the text
planner, which determines content and structure of the target text, without
concern for linguistic form.

2.2.4.1 The Application-Specific Generator

The first task in building a text generator for the PMA was to determine the types
of text that should be generated. This task was performed at CoGenTex with
close feedback from Ander<en personnel, thus giving domain experts the
opportunity to provide input into this crucial phase. The main constraints are the
available knowledge in the underlying application program, and the
requirements on the output texts. In the PMA, the knowledge representation
provides a hierarchical decomposition of tasks. These tasks are annotated with
seman*ic information that identifies them as one of a limited and predefined set
of task types -- requirements, specification, issues resolution, coding, testing etc.
Furthermore, each task is annotated with begin and end date. After carefully
studying the available information and the usefulness of different types of text, it
was decided to generate texts that for a specific period describe all ongoing
activity. The text is structured according to a typical software development
model: requirements analysis precedes specification, which precedes coding, etc.
In addition, another model was developed to correspond with the KBSA process
model [Sasso 90] used in the Concept Demo. If a task has subtasks, then the
subtasks are described before the next task in the software development model is
discussed. For each of these tasks, the text follows the hierarchical
decomposition of tasks in the PMA knowledge representation. A limit can be set
on the depth at which such task decomposition is described, in order to describe
tasks at the appropriate level of detail for different users.

The generator shell needed to be augmented with three types of information:

The concepts that the texts communicate needed to be defined. Concepts are
language-independent, frame-like representations of communicative content.

2-4

For the PMA, the concepts include budget-item, milestone, and requirements .
Concepts are expressed in a macro-language interpreted by the generator shell.

The text planner was encoded. It accesses the knowledge base of the PMA (via
the IKRS; see below) and determines structure and content of the target text. The
structure and content is expressed as a stream of conceptual representations
(encoded in terms of the concepts) that the text planner sends to the sentence
planner. The text planner is expressed in a macro-language interpreted by the
generator shell.

The conceptual dictionary was defined. It contains translations from concepts to
linguistic structures, that encode lexical and deep-syntactic realization choices.

2.2.4.2 The Intermediate Knowledge Representation Scheme

The Intermediate Kncwledge Representation Scheme (IKRS) is a representation
of PMA domain knowledge within the text generator. It has two distinct

purpcres:

Certain inferences and calculations about domain facts must be made for the
sake of text generation. These inferences should not be made by the text
generator proper, because they are not related to communication (cnly
motivated by it). On the other hand, the text generator should not expect the
underlying application program to be modified for its purposes. The IKRS thus
allows for conceptual modularity. In the PMA text generator, one of the main
tasks of the IKRS is to represent and perform calculations on time points and
time intervals, which is needed both for structuring the text, and for choosing
proper grammatical tense for sentence realization.

The IKRS also allows for an easy integration of the text generator with the
underlying application, since the interface can be concentrated in one file, ra*her
than scattered throughout the generator. Thus the IKRS is a crucial tool in
modular software development.

2.2.4.3 Sample Text

The following is a sample text illustrating the description of tasks performed
using the KBSA process model in the Concept Demo.

Project Report
This report covers the period from October 11th until October 23rd.

Progress Against Milestones

2-5

Building of the Air-traffic-management started. Requirements acquisition for the Air-
traffic-management was completed. The specification for it started. Outstanding issues
were resolved. Manually created issues were addressed. Transferring the slots to the
flight plan resolved the issue of adding a flight plan to the air-traffic-management domcin
model. Syntactic issues were resolved. Defining a referenced object addressed the issue of
an undefined name reference. This issue was resolved manually. Resource issues were
resolved. The issue of illegal access of aircraft location was addressed by splicing a
communicator to resolve the illegal slot usage. This issue was resolved manually.

Cost Status
35% of the project budget has been spent ($7,000 out of $20,000).

Schedule Status

The project is currently on schedule.
2.2.4.4 Project Management Report Generation Summary

The CoGenTex text generator for the PMA in the Concept Demo has shown that
in a relatively modest effort it was possible to build a useful tool for project
managers. The principal areas for future improvement are the identification of a
larger set of conceptually defined task types (so that the generator can be more
explicit in describing the structure of projects) and a more complete integration
with the Concept Demo knowledge-base. The text generator is the one module in
the Concept Demo that is only integrated at the conceptual level. Le,, it is
currently necessary to manually create an object structure that corresponds to the
task hierarchy that needs to be paraphrased. To complete the actual integration
would not be difficult - it would involve the definition of accessor functions to
communicate between the text generator and PMA objects.

2.2.5 Integration with the Development Assistant

The Development Assistant is used in the Concept Demo to illustrate the KBSA
approach to the downstream part of the development life-cycle. Integration with
the Development Assistant was achieved by building the ERSLa language on top
of Regroup - the specification language used by the Development Assistant.
ERSLa was originally developed on top of Refine and for simplicity we often still
describe it as an extension of Refine since Refine is more widely known than
Regroup. Regroup specifications are all legal ERSLa specifications. This allows
the requirements /specification functionality in the Concept Demo to be used to
develop Regroup specifications and to link formal Regroup specifications to
informal requirements in the Concept Demo hypertext system. This integration is
illustrated in scenarios 3.4.6 and 3.4.7 in the Concept Demo User's Manual
{Andersen 92].

2-6

2.3 Reimplementation and New Functionality

A high-level view of the data-flow for the modules of the Concept Demo built
using the Concept Demo framework is showr in figure 2-2. In the following

section we will discuss the Concept Demo framework and the functionality built
on it.

RTF =>

Hypertext
translator

Concept Demo Framewor?:

Simulation &
protoyping

N\
Hypertext

Aries
paraphraser

Formal
validation

Gist =>
ERSLa
translator

equirements
organization &
formalization

Specification
development &

Hypertext Devel X elaboration
Objects evteazp':rsnen
: Create Development
————— Files .
hypertext via tasks |
CD interface

Agenda
mechanism

Project

management Development & project

management tasks | Regroup
I

Algorithm
design & code
generation

Figure 2-2: Expanded DFD Showing the Concept Demo Framework

2-7

L

2.3.1 Concept Demo Framework

The Concept Demo framew-_rk consists of the presentation-based interface, the
ERSLa specification language, the history mechanism, and the agenda
mechanism. ERSLa and the presentation-based interface are discussed in the
following sections. The history and agenda mechanisms are discussed in detail in
section 3 of this report.

2.3.1.1 Presentation-based Interface

Figure 2-3 shows the architecture for the Concept Demo user interface. The
starting point is an X version of Common Windows — a window system that is
part of the Allegro™ Lisp environment that Software Refinery is built on. The
next level is Intervista™. Intervista is the window environment that is part of
Software Refinery and provides Ul capabilities especially suited to software
development environments.

ATC Class Decision
Simulation, ... IBIS, ... hierarchy; ... E/R, ... table, ...
Animation Hypertext geeh AGL Tables
Graphics L

Context Driven Menus & Presentation Mechanism

Intervista

Common Windowse

X Windows
Figure 2-3: Architecture for the Presentation-based Interface

All of the levels above Intervista are additions developed in the Concept Demo.
The following is an overview of these general Concept Demo user interface
utilities. For details on how to use and extend these utilities see section 5.4.2 in
the Concept Demo Uset's Manual.

Context driven menus provide general utilities for associating menus with
objects and presenting specific menus based on the context of the object.

The presentation mechanism maintains consistency between the knowledge-
base and the user interface.

Animation graphics are built primarily on Common Windows. These are
utilities to create and animate bitmap icons.

The hypertext mechanism provides general utilities for associating strings with
kb-objects (building on Intervista's mouse-sensitive printing windows) and for
structuring and viewing hypertext documents.

Tree graphs extend the functionality in Intervista for graphing trees.

AGL (Aethetic Graph Layout) is an extension of the Diagram Windows
component in Intervista for visualizing general graph structures. AGL provides
utilities to automatically position nodes in network graphs and to automatically
route edges in such graphs in order to minimize bends and crossings. The node-
positioning heuristic works moderately well for small graphs. The edge-routing
algorithms are mature and work well even on large graphs.

Tables is a set of utilities that extends the “You’re On Your Own” (or YOYQ)
table provided in the Refine 3.1 version of Intervista.

Representative user presentations are shown across the top of the diagram
above the particular utility that they use. For example, the E/R presentation is
built using the AGL utilities. Since the majority oi these presentations deal with
requirements and specifications, their detailed descriptions are provided in
section 2.3.2 (below) describing requirements and specification functionality.

2.3.1.2 Extended Refine Specification Language (ERSLa)
The ERSLa language is built on top of the Regroup language used by the Development
Assistant project. Regroup is itself an extension of the Refine language. For a description
of the Refine language, see the Refine User's Guide. For a description of Regroup and
the Development Assistant, see the Development Assistant final report [Smith 91].
There are three types of ERSLa extensions:

1) Gist constructs.

2) Object-oriented constructs.

3) Domain-specific constructs.

The following section describes the most important extensions in ERSLa. Section 5.2 in
the Concept Demo User's manual provides extra detail for ERSLa users.

2.3.1.2.1 Gist Extensions
The ability to declare and maintain constraints is one of the most important
features of the Gist specification language that does not exist in Refine. The two

Gist constructs for defining such constraints are the invariant and the demon. An
invariant describes some logical condition that is always meant to be true. A

2-9

demon consists of a predicate to test (the when condition) and an action to take
when the predicate is true.

Using the grammar definition capabilities in the Dialect component of Software
Refinery, it was relatively simple to define a new grammar that inherits from the
Regroup grammar and adds constructs for invariants and demons. However, we
wanted to also make these constructs executable. To do this, we built on the
policy mechanism in the PMA [Daum 90]. The PMA policy mechanism allows
managers to define high-level constraints on the project-management
knowledge-base and actions to take when policies are violated. The policy
mechanism is implemented using a general knowledge-base constraint
mechanism called a monitor which is equivalent to the demon construct in Gist.
Like the demon, the PMA monitor consists of a “when” part to define the policy
and a “do” part to define the action taken when the policy is violated. Demons
in ERSLa get translated to these PMA monitor objects. Invariants in ERSLa are
transformed to monitors where the “when” condition is the negation of the
invariant and the action is to report a violation and interrupt the specification
simulation.

The current implementation of constraints in ERSLa is inefficient. Any demon or
invariant which has a universal quantification over two or more classes will
execute very slowly if there are more than a few (five or more) instances of the
classes. Many of the efficiency problems inherent in PMA policies and ERSLa
constraints have been addressed in further work by Xio Lia Xian (the original
developer of the PMA policy mechanism) reported in [Jagadish 92].

2.3.1.2.2 Object-Oriented Constructs

KB-Modules. A kb-module is an object that collects other objects into functional
modules. Unless explicitly declared, objects in one module are hidden from other
modules. Use relations between modules are explicitly declared. This is an attempt to
represent and reason about encapsulation at a larger level of granularity than that
provided by classes. In the Concept Demo, systems are compositions of kb-modules
(where each module itself may contain a number of sub-modules). Kb-modules use a
protocol similar to the package protocol used in Common Lisp for describing relations
between modules. Each module has exported objects. Each module has a set of modules
which it uses and another set which it is used by. An object X is visible to another object
Y if and only if

1) X and Y are in the same module, or

2) the module that X is contained in is used by the module that Y is
contained in and X is exported from its module.

Kb-modules can contain many types of objects. They may contain formal objects
describing requirements and specifications. They may contain informal (e.g., hypertext)

2-10

objects describing requirements or tasks. They may contain objects which make up the
Concept Demo system. An important type of kb-module is a library module. A library
module contains instances of other kb-modules. Note that there is an important
difference between loading the definition for a kb-module (a particular instance of the
kb-module class) and loading the objects contained in a module. Typically there will be
many more modules defined than are actually loaded into the environment.

Methods. ERSLa extends Refine with a message passing protocol that is similar to that
used by the Common-Lisp Object System (CLOS). A method definition in ERSLa looks
exactly the same as a function definition in Refine, except that “method” is substituted
for “function”. In defining a method, the data-type for the first argument must be
declared, and that data-type must be an object-class. The data-type for the first
argument of the method is used to determine which class this method is defined for.
Invocation of methods is exactly the same as invocation of functions. This is similar to
CLOS, except that only the first argument of the method can be used to discriminate the
handler in ERSLa.

2.3.1.2.3 Domain Specific Constructs

While developing the Concept Demo, we frequently presented the evolving
ERSLa language to software development professionals for feedback. One
common issue raised was the difference between a programming language and
a specification language. In the research community this debate often centers
around the degree of formality, declarativeness, and executability of the
language. However, these issues were of little concern to the developers that we
talked to. Instead, they wanted representations that allow them to describe
problems easily, intuitively, and using existing notations. In addition, they did
not seem to be concerned with distinction between the language and the
interfaces that support it. For this reason we believe that domain specific
representations — combinations of language extensions and graphic interfaces
— will play an important role in the long term adoption of KBSE. The following
are examples of such representations.

In the current version of ERSLa the “domains” are types of programming
problems rather than application domains. In the long term, we would like to
develop a hierarchy of domains, building first on a general purpose specification
language, then adding programming domain constructs (such as those described
below) and finally building application domain constructs. These ideas are
described in more detail in [Cabral 91].

Measurement Units. In domains as diverse as scientific programming and
accounting, the association of units with numbers occurs on a regular basis. The
measurement-type constructs in ERSLa allow developers to associate numbers
(integers or reals) with values. This provides automatic checking for entered
values as well as conversions from one measurement to another - e.g., if “2

2-11

minutes” is entered where a seconds-measurement is required then it will be
automatically coerced to “120 seconds”.

Decision Tables. The decision table is used to describe complex decision logic.
In this case, the language construct is just a place holder tor the graphic interface
for creating and editing the table. The graphic interface will inherit the lexical
scope for the particular language construct that it is being used to edit. This
means that when filling in the table, the options will be constrained by the local
variables that are visible in the context of the specification object that the decision
table is contained in.

Time Demons. In order to create real-time simulations to test our executable
specifications, we extended the traditional notion of a Gist demon with a demon
that is triggered by the passage of time. Instead of a “when” condition, time
demons use the keyword “every” followed by a time measurement defined using
the measurement units (e.g., “5 seconds”). The action or “do” part of the time
demons is exactly the same as regular demons - i.e., any ERSLa expression.

2.3.2 Requirements & Specification Functionality

This section describes all of the requirements and specification functionality in
figure 2-2 except for the agenda mechanism and the formal validation
functionality. The agenda mechanism is described in section 3 of this report. The
formal validation functionality is described in section 4.

2.3.2.1 Requirements Organization & Formalization

The Concept Demo uses a Hypertext presentation to enter and view informal
requirements. Each requirement is entered as a text string with pointers to other
objects such as the author of the requirement, other requirements with which the
requirement may conflict, requirements documents that the requirement is part
of, etc. The text string for the hypertext requirement is a hyperstring. A
hyperstring and its pointers to other objects is a hypertext node. When a
hyperstring is entered or modified, any words in the hyperstring that correspond
to the names of objects describing requirements or specifications for that system
are highlighted in boldface and made mouse-sensitive, providing the developer
with access to context specific menus. This recognition was described with the
phrase Catch as Catch Can in the KBRA [Harris 88, since the tool will often fail to
recognize words or phrases that relate to formal objects because of the ambiguity
inherent in natural language. Whenever the knowledge base is updated, part of
the job of the presentation interface is to update the display of viewable
hyperstrings so that references to objects that have been added or deleted will be
updated.

The Concept Demo does not use natural language processing techniques, such as
those found in the KBRA. It is limited to simply processing each word in the

2-12

string and looking it up in the knowledge base. However, it provides general
hypertext functionality that was not present in KBRA, as well as classes of
hypertext nodes and hypertext links that are geared toward requirements. These
include all the classes (issues, positions and arguments) and links (responds-to,
objects-to, supports, etc.) in the IBIS [Conklin 88] methodology.

2.3.2.2 Graphic Presentations

Most of the presentations in the Concept Demo relate to creating, modifying and
viewing formal and informal requirements and specification objects. For that
reason a detailed discussion of the “user level” presentations mentioned in
section 2.3.1.1 was postponed for this section. The following conventions are
used to show the relation between the user level presentations and the general
interface capabilities described in 2.3.1.1.

* Presentations ending in “diagram” are built on the AGL layer.

* Presentations ending in “tree” are built on the tree graph! layer.

* Presentations ending in “display” are built on the hypertext layer.

* Presentations ending in “animation” are built on the animation layer.

* Presentations ending in “table” are build on the tables layer.
Presentations for class and slot definitions.

* Entity Relation (E/R) Diagram. Allows the developer to view and edit

class definitions using an E/R formalism. Classes are treated as entities,

slots with a range that is not a KB class (e.g., integer, string, symbol, ...) are
treated as attributes, slots with a class range are treated as relations.

* Class Tree. Graphs the subclass links between a group of classes.
Presentations for instances. These presentations are useful for viewing instances
and slot values. Since elements of specifications are also instances, e.g., a class
definition is itself an instance of the Class (meta) class, these presentations are
useful for viewing specification and requirements objects and the relations

between them. These presentations are also useful for viewing objects created as
a result of executing simulations.

1 Many of the tree-based presentations are graphs that may not always be strictly trees
(e.g., the function calling graph). The tree graphing utilities will still work in such cases.

2-13

* Object Frame Display. Displays slots for a particular object and the
values for the slots. The slots and the slot values are mouse-sensitive,
providing the developer with access to context specific menus. The
developer can control which slots will be seen for instances of each class.

* Edit Object Display. Similar to the Object Frame Display except that the
slot values can be edited.

¢ Object Values Table. Takes a set of instances and a set of slots and
displays the slot values for each slot on each instance in an editable form.
This presentation is written so that it can be easily customized to display
and edit specialized views of the knowledge-base.

¢ Non-functional Requirements Table. The ERSLa meta-model includes
slots that represent non-functional requirements for specification objects
(e.g., required execution time for a function). These are defined using the
measurement types in ERSLa. This presentation is a specialization of the
Object Values Table for editing these slots.

* Semantic Net Diagram. Takes a group of instances and a group of
relations and graphs the links between those instances. This presentation is
written so that it can be easily customized to display and edit specialized
views of the knowledge-base.

¢ IBIS Diagram. A customization of the Semantic Net for displaying IBIS
instances (positions, issues, arguments) and links (responds-to, supports,
etc.).

* REMAP Diagram. A customization of the Semantic Net for displaying
objects and links corresponding to portions of the REMAP model for
requirements tracking described in [Ramesh 91].

* Hypertext Display. Integrates the Object Frame display with a
mechanism for dynamically creating mouse sensitive highlighting for
references to objects in hyperstrings.

¢ ATC Animation. Has bitmaps defined for aircraft and airports, and uses
time-demons to update the location of an aircraft on the screen when it
takes-off, lands, or changes its position.

* Traffic Light Animation. Has bitmaps (cars, trucks, and colored stop
lights) to simulate the traffic light specification. This presentation has not
been integrated with the traffic light specification in the current version.

Process req/spec presentations. These are useful for viewing control and data-

flow views of requirements and specifications.

2-14

¢ Information Flow Diagram. Provides information on how the slots of a
class are accessed and modified by functions and other process oriented
specification constructs.

* Syntax Based Display. Displays the ERSLa description for a KB object
and performs mouse sensitive highlighting based on the parse tree of the
object.

* Function Decomposition Tree. Takes a function and graphs all the
functions called by that function (and all their callers, etc.)

¢ Decision Table. The graphic interface for editing the decision table
construct in ERSLa.

KB Module presentations.

¢ Used-by Relations Tree. Displays the use relations between knowledge
base modules.

* Module Decomposition Tree. Takes a starting kb-module and shows all
the kb-modules which are contained in that module (as well as any
modules contained in those modules, etc.) This is analogous to the top-
down product decomposition diagrams in 2167a Software Design
Documents.

Software process presentations.

* Task History Tree. Graphs the actions (instances of tasks) performed in a
development session.

* Task Decomposition Tree. Graphs all the subtasks of a task.
2.3.2.3 Specification Feedback

One advantage of a formal specification is the ability to reason about the
specification and provide feedback to the developer. The Concept Demo
provides four types of specification feedback: Syntactic Analysis, Resource
Analysis, Paraphrasing, and Simulation.

e Syntactic Analysis provides feedback on the syntactic correctness of each

specification construct. This includes problems such as type
inconsistencies, references to undefined objects, and parameter mismatches.

2-15

* Resource Analysis is used to analyze the resource usage of objects across
kb-module boundaries. Objects that violate the encapsulation rules
described in section 2.3.1.2.2 are flagged with issues.

e Paraphrasing is used to translate formal specification constructs into
English. The Concept Demo paraphraser is adapted from the software used
by the Aries system to paraphrase Gist specifications. See [Williams 90] for
a detailed description of the paraphraser.

e Simulation is used to evaluate the behavior of an executable simulation.
During simulation any invariant violation interrupts the simulation and is
recorded in a log for the simulation. The animation interfaces described
above provide graphic capabilities for controlling and viewing simulations.
The ERSLa demons triggered by the passage of time provide high-level
constructs to create and control simulations.

2.3.2.4 Evolution Transformations

The Specification Assistant and Aries projects developed the concept of Evolution
Transformations for performing “stereotypical, meaningful changes to the
specification” [Johnson 88] in “systematic, controlled ways” [Johnson 90b].
Evolution transformations are performed with the history mechanism, allowing a
developer to explore alternative development options and to undo and redo any
sequence of development steps. An important accomplishment of the Concept
Demo was to integrate evolution transformations with the requirements and
specification feedback discussed above using a task based process formalism.
The architecture for this integration is discussed in detail in section 3. Here we
provide a description of the types of evolution transformations that exist in the
Concept Demo.

Evolution transformations in the Concept Demo can be categorized along two
orthogonal dimensions:

1) The degree of automation/sophistication provided by the transformation.
2) The goal that the transformation is trying to achieve.

Along the first dimension (automation/sophistication), the Concept Demo
transformations fall into three different categories from least to most
sophisticated:

1) Tool wrapping transformations. These transformations are really
programmatic ways of invoking other tools such as editors or functions to
compile and load files. These transformations provide functionality similar to
“derivers” in the Artifacts system [Karr 89] or the tools wrapped by envelopes in
the Marvel [Kaiser 88a)] system. Examples of these types of transformations are

2-16

invoking Emacs to define or edit an informal requirement and loading a kb-
module from a file.

2) Basic KB manipulation transformations. These transformations provide
functionality to create and make basic changes to specification language objects.
They are similar to the functionality provided by sophisticated object-oriented
development environments such as KEE [Fikes 85] to create and modify classes,
slots, and methods. These transformations are also the building blocks for the
third group of transformations. Examples of these types of transformations are
defining new classes and adding slots to an existing class.

3) Pattern matching transformations. These are the truly powerful evolution
transformations. The previous two groups of transformations for the most part
simply add to or make local changes to the knowledge-base. These
transformations use the pattern matching capability in the Refine transformation
engine to make wide-scale changes to the specification and evolve itin a
controlled fashion. An example of this type of transformation is the bundle
transformation. Bundle moves existing slots from one class to another while
maintaining consistency with existing functions, invariants, etc.

Considering the transformation’s goal (the second dimension), the Concept
Demo transformations can be grouped into the following 5 categories:

1) Project-management. These transformations work on process objects.
Examples of these transformations are assigning a task to a developer and
creating a task structure for the development of a kb-module. Most of these
transformations are basic KB manipulation transformations.

2) Requirements definition. These transformations are for creating new
hypertext requirements via Emacs or for translating existing RTF files into
hypertext format. Most of these are tool wrapping transformations.

3) Requirements elaboration. These transformations edit and annotate existing
requirements. These are a combination of tool wrapping and KB manipulation
transformations. Examples of these transformations are adding IBIS nodes and
links to a hypertext requirements document.

4) Specification definition. These transformations create initial specification
language definitions. They are a combination of tool wrapping and basic KB
manipulation transformations. Examples of these transformations are creating
classes, invariants, etc.

5) Specification elaboration. These transformations evolve existing

specifications. They are primarily pattern matching transformations. Examples of
these transformations are bundle and splice communicator.

2-17

Scenarios 3.4.2, 3.4.3, and 3.4.4 in the Concept Demo User's Manual demonstrate
the use of many evolution transformations. Section 5.3 in the manual contains a
detailed description of the core evolution transformations.

2-18

3. The KBSA Concept Demo Architecture for Intelligent Assistance
3.1 Introduction

In this section we describe the Concept Demo architecture for intelligent
assistance. Our primary design goal for this architecture was to enable
constructing a tool using current knowledge-base, mature KBSA, and CASE
technology that would provide dramatic improvements over existing CASE tools
while at the same time providing a foundation to integrate future mature results
from the KBSA program. Such a tool would gradually evolve into a product-level
Knowledge-Based Software Assistant equivalent to the description in the original
KBSA vision [Green 83]. We attempted to build the Concept Demo as a prototype
of such a tool. We see the Concept Demo architecture for intelligent assistance as
a specification for the architecture of such a tool.

We first describe (section 3.2) the structure of the Concept Demo knowledge-base
relevant to intelligent assistance then (section 3.3) we describe the flow of objects
and messages that occurs in the execution of a task in the Concept Demo. The
discussions in sections 3.2 and 3.3 are at a conceptual and somewhat idealized
level. In sections 3.4 and 3.5 we discuss the current implementation of this
architecture. First (section 3.4) we relate what users see during the execution of
example tasks from scenarios in the Concept Demo User’'s Manual to the task
execution described in section 3.3. We then (section 3.5) describe how each task
execution step is currently implemented. This discussion in section 3.5 is ata
level of detail appropriate for developers who wish to understand and extend the
Concept Demo system. Other readers are urged to skim or skip this section.
Finally, in section 3.6, we describe how the Concept Demo architecture could be
used to build a knowledge-based CASE tool that could evolve into an advanced
KBSA.

3.2 The Concept Demo Knowledge-Base

Figure 3-1 shows the structure of the Concept Demo knowledge-base. Each box
in Figure 3-1 is a kb-module - a collection of related classes, methods, rules, etc.
For each kb-module, we show a representative example of a component from the
Concept Demo that is included in that module. The arrows in Figure 3-1 show
the general flow of objects and messages between modules. For example, process
model objects are sent to the presentation-based interface in order to be viewed
and accessed by the user, but process model objects never directly use or modify
interface objects.

Process model objects

formalize-atc-requirements: task instance-of
formalize-requirements-task subtasks:

Presentation-based Interface / [formalize-contral-requirement, ...]
Task Hierarchy 1

Context Presentation / . .
driven <y Process automation & reasoning

menus forall(kbm: kb-module,x: object) x in
0 owned-objects(kbm) & informal-object(x) &
formalized?(x) => formalized?(kbm) = true
Class Hierarchy | /
Context Presentation /
driven Product transformations
menus '\ rule splice-class (existing-class: class,
0] new-parent: class)

\{m_ovable-object: class subtype-of object
aircraft: class subtype-of movable-object
controlled-by: map(aircraft, controller)
in-flight?: map(aircraft, boolean)

current-parent = superclass(existing-class) —>
superclass(new-parent) = current-parent &
Context E/R Presentation superclass(existing-class) = new-parent
driven *
menus
\ Product Meta-model objects

Figure 3-1: KB-Modules in the KBSA Concept Demo
The following describes these Concept Demo kb-modules.

The Presentation-based interface extends concepts first used in the KBRA
[Harris 88] to provide various views of the knowledge-base that are maintained
independently of the functions that modify the knowledge-base. The Concept
Demo incorporates the CLF [ISI 86] technique of context driven menus into the
presentation-based interface. Each menu item includes a state description that
can be used to describe when it is appropriate to display the item. This allows
menus to be associated with object classes in a way that is independent of
interface presentations - the presentation that an object is bei.ig viewed in is
simply one more part of the state description passed to the menu creation
method.

The Concept Demo also uses the presentation-based interface to view the

complete KB - both process and product objects. This is an extension over
previous KBSA systems which used the presentation-based interface to view

3-2

only product objects. It is possible to invoke tasks both from product and process
representations. This is indicated by the fact that input arrows come into the
process automation box from both types of prese'.tations.

Process model objects are classes and instances s'1ch as tasks, states, problem
descriptions, etc.

Process automation & reasoning is executed by rules, methods, and functions.
Examples of the reasoning executed by this kb-module includes determining the
status of tasks and products, posting descriptions of problems, suggesting
resolutions to problems, prioritizing outstanding tasks, and recording a
development history.

All actions performed by the user are invoked through the process automation &
reasoning module. Transformations are never directly invoked. Instead, they are
executed as a result of invoking tasks. This provides context and rationale for the
recorded use of transformations.

Product transformations evolve the software products (requirements,
specifications, code, ...) being developed. In this case we use “transformation” in
a much broader sense than is often used in KBSA literature. In the Concept
Demo, transformations can be invocations of tools such as editors or (the more
standard definition) forward chaining transformation rules specifically designed
to modify software products.

Product Meta-model objects are instances of classes in meta-models that
describe the requirements, specification, and programming languages used to
develop products. A meta-model is a group of classes that describe the constructs
in a language. It is a “meta” model because the language itself is used to model a
domain or problem. The meta-model is an extension of the CLOS concept of a
meta-class —a class that classes themselves are instances of. In KBSA
environments all language constructs (e.g., invariants, demons, functions,
classes) are instances of a corresponding class in the meta-model. KBSA
technology such as the Dialect™ component in Software Refinery™ or POPART
(Johnson 88b] facilitate the use of a meta-model by generating parsers that create
instances of object classes as a by-product of parsing.

3.3 Task Execution in the Concept Demo
In this section we will describe the execution of tasks in the Concept Demo.
Before describing task execution in detail, it is necessary to describe the Task

class and terminology associated with it.

3.3.1 Description of the Task Class

Preconditions are logical predicates that describe the state that must hold in
order to execute a task. Postconditions describe the state that will hold after a
task has successfully completed.

Supertask slots point from a task to its parents in the subtask hierarchy. Subtask
slots point to its children in the hierarchy. Tasks can be decomposed from very
high-level tasks that are worked on by several developers such as “Build System”
to intermediate subtasks such as “Formalize Requirements” that are important
steps in the process model but are small enough that they can be worked on by a
single developer to subtasks such as “Formalize Control Requirement” that are
instances of individual transformations and are executed in order to reach the
goals of higher level supertasks.

Atomic tasks are leaf nodes in the subtask hierarchy -i.e., tasks that have no
subtasks.

Transformation rules vs. Tool invocations. Atomic tasks are divided into two
basic categories: tool invocation tasks and transformation rule tasks. Tool
invocation tasks are executed by calling tools such as editors and compilers.
Transformation rule tasks are executed by invoking meaning preserving or
evolution transformations.

The Task body is a function used to execute a task. All atomic tasks must have a
task body. The task body can be a call to a transformation rule or an invocation of
an external tool such as an editor.

Task parameters define the inputs to a task. In order for a task to be executed its
parameters must be fully instantiated. The task is then recorded in a
development history and the parameters can be used to replay the task at a later
date. It is also possible to store tasks that have not yet been executed (e.g.,
pending tasks on the agenda) with parameter lists partially instantiated. This
provides intelligent assistance by automatically supplying arguments that
otherwise would need to be input by the user.

3.3.2 Detailed Description of Task Execution
We now describe the steps involved in executing a task in the Concept Demo.

These steps are illustrated in Figure 3-2. The processes Invoke task and Update
presentations are drawn in bold because they are the start and end steps.

34

Process automation
Presentation-based & reasoning
interface p-| Execute

Selected
task

task

Instantiated
transformations

Analyze
process

New & modified
tasks New &

modified
issues

Analyze

New & modified issues products

New &
modified
products

New & modified
products

Execute
ransformation

Product transformations

Figure 3-2: Data-flow Diagram for Execution of a Concept Demo Task

Invoke task. In this step the user invokes a task from a context driven menu. The
task can be invoked by clicking on it directly via a process representation (e.g., a
subtask hierarchy graph or an agenda display) or implicitly by selecting an
action on a product (e.g., selecting an informal requirement and choosing the
action “formalize requirement”). The user supplies any needed parameters to the
task via a general “Accept Values” mechanism similar to that used in the
Symbolics Genera™ environment. This guarantees that only legal objects will be
passed to the task as arguments and also helps make the declaration of tasks
independent of the user interface.

Execute task. Various types of reasoning may be required in order to execute a
task. For example, if the preconditions of a task are not satisfied, backward
chaining could be used to reason backward to tasks whose postconditions will
satisfy the preconditions of the goal task. There is a two way arrow between
execute task and invoke task since the execution of a task may result in the
invocation of lower level subtasks which will then require parameters to be
instantiated via the user interface. Execution for atomic tasks consists of simply
invoking the task's body function with the task arguments.

3-5

The current implementation of the Concept Demo performs relatively shallow
reasoning during task execution (this is described in detail in section 5.2). The
architecture of the Concept Demo is structured so that more sophisticated
reasoning such as that performed in the Marvel system [Kaiser 88] can be
incorporated in the future.

Execute transformations. The result of executing the task will be an ordered
sequence of one or more transformations to execute. These could be specification
evolution transformations, meaning preserving transformations, or invocations
of tools such as text editors.

Analyze products. After the tasks have been executed, the products which were
changed by them are analyzed. This analysis is based on the process model and
may include more global analysis — for example, to determine the state of the
developer's workspace.

Analyze process. Product analysis will create problem descriptions called issues.
Process analysis will then analyze these issues and generate possible resolution
tasks. In addition, the general state of the developer's workspace with respect to
the process model will be re-evaluated. This will include removing issues that
have been resolved as a result of the task execution, removal of tasks that were
created to resolve issues that have been removed, and propagating the effects of
the completion of low-level tasks back up to the appropriate supertasks.

Update presentations. The final step in the execution of a task is to update the
presentation-based interface for all modified process and product objects.

3.3.3 Saving of State and Task Information

All of the changes introduced to the knowledge-base as a result of the execution
of a task are saved in a KB state. This allows the developer to easily undo or redo
the effects of a task. This is represents an enhancement to the history capability in
CLF, since CLF will only undo/redo changes made by a development step to
APS5 relations. There are often significant changes made by a development step in
the CLF environment (for example, to the user interface) that are not captured in
APS5. Since all significant changes in the Concept Demo are captured in the Refine
KB, the developer's workspace moves to exactly the same state when a
development step is undone or redone as originally resulted from the execution
of the development task.

In addition to saving the state that results from execution of a task, the task itself
is stored along with the parameters that it was invoked with and other relevant
information (such as who executed the task, when it completed, which objects it
modified, which issues it resolved, etc).

3-6

Saving the task parameters allows the task to be replayed in a different context if

needed. For example, to undo a task T1, execute a new task T2, and then redo T1; |
it is necessary to replay T1 as opposed to simply moving to the state that resulted

from T1 since moving to the state would negate the effect of T2. This replay

mechanism is similar to replay in the Specification Assistant [Johnson 88a].

3.4 Examples from the Concept Demo

In this section we describe the execution of three example tasks in the Concept
Demo. This section is meant to be used in conjunction with the scenario: “3.4.3
Process Guidance in the Acquisition of Informal Requirements” in the Concept
Demo User's Manual. We encourage readers not familiar with this scenario to go
through it (“hands on” if possible). Alternatively, they may wish to skim or skip
this section.

3.4.1 Create a New Informal Requirement

This task corresponds to scenario element “3.4.3.2 Creating an Informal
Requirement in Hypertext.”

3.4.1.1 Invoke task. To begin, the developer selects the task of adding a new
informal object from a product representation — a Semantic Net graph that
currently shows requirements traceability links. There are two arguments
required for the task of adding a new informal object. The first is the class that
the informal object will be an instance of and the second is the kb-module that
the informal object will be a component of. The first argument is input by the
user from a menu of possible subclasses of informal object and the second is
provided implicitly from the kb-module that the semantic net presentation is
viewing.

3.4.1.2 Execute task. This is a simple task, requiring no decomposition. Its
execution merely calls the function in the task body.

3.4.1.3 Execute transformations. This is a tool invocation task. The execution of
the function in the body of the task invokes Emacs and allows the developer to
create a textual description for the informal requirement, in this simple example
the string: “All aircraft that are in-tlight must be controlled.”

3.4.1.4 Analyze products. Product analysis initiated after completion of the task
reveals that there is a new informal requirement without a corresponding formal
definition. This generates an issue requiring the creation of a formal definition for
the requirement.

3.4.1.5 Analyze process. Process analysis detects the formalization issue and

generates a task for creation of a formal definition for the requirement. This task
is then placed on the developer's agenda. Note the message: “Adding

3-7

FORMALIZE CONTROL REQUIREMENT to agenda” in the Output Window.
The agenda is prioritized and this new task is determined to be the most
important task to accomplish.

3.4.1.6 Update presentations. For this task, updating of the presentation-based
interface adds the informal requirement to the Semantic Net graph. At the end of
presentation update, all presentations for objects that have been changed or
added as a result of the task are highlighted in reverse-video. Thus, for this task
the icon for the new control requirement hypertext node is highlighted.

At the end of the task (as for every task) the changes to the knowledge-base are
saved in a state that can be moved to or from. In addition, the task is placed in an
appropriate position in the subtask hierarchy, and relevant information about it
(such as what objects it modified) is saved. The message “Knowledge-base is
now in state resulting from ADDED REQUIREMENT CONTROL
REQUIREMENT” is displayed in the Output Window. In this case “ADDED
REQUIREMENT CONTROL REQUIREMENT” is the name of the task that was
just completed. Note that the display for this task in the Output Window is in
bold which means it is mouse sensitive and could be displayed, browsed, etc.

3.4.2 Formalize the Requirement

This task corresponds to scenario element “3.4.3.3 Accessing KBSA's Process
Guidance Capability.”

3.4.2.1 Invoke task. While the previous task was invoked from a product
presentation, this task is invoked from a process presentation. The developer
inquires “What should I do next?” from the “Feedback and Guidance” icon in the
control panel in the upper left corner of the interface. In step 3.4.1.6 the
formalization task was created and placed at the top of the agenda. This task is
now displayed in a mouse sensitive format. This enables the developer to mouse
directly on the task and invoke it.

3.4.2.2 Execute task. In executing this task, the Concept Demo finds two atomic
tasks that could satisfy the goal of formalizing the requirement: (1) creation of a
new formal definition for the requirement and (2) linkage of the requirement to
an existing formal definition. The system prompts the user to select which of
these two alternative tasks to use. In this scenario there is no existing formal
definition that can be used, so the user selects the task to create a new formal
definition. This causes the system to invoke the parameters for the “Add formal
definition” task. The first parameter is the class of the new formal object to add
(see the discussion of the product meta-model in section 3.2). Once the class of
the formal object has been chosen (in this case, an invariant) a form is presented
to fill in the name, parameters, and body of the invariant.

3.4.2.3 Execute transformations. This is a KB manipulation transformation that
adds the new definition for the invariant to the knowledge-base. It also adds a
“formalized-by” link from the informal requirement to the invariant and a
“formalizes” link from the invariant to the informal requirement.

3.4.2.4 Analyze products. The issue describing the problem of an unformalized
requirement is marked as resolved. In creating the invariant the body of the
invariant was defined to be: “in-flight(ac) => controlled(ac)” - the invariant
parameter list: “ac: aircraft” binds ac to stand for all instances of the aircraft
class. This is the ERSLa way of expressing “If an aircraft is in-flight then it must
be controlled.” However, while there is a formal definition for “in-flight” in the
knowledge-base, there is currently no definition for “controlled”. The syntactic
analysis for specification completeness detects this problem and creates a new
issue describing the need to create a “map” named controlled. Because of the
context in which controlled was used, the system is able to determine that
controlled must be a map (a mapping from the domain of aircraft to a Boolean of
true or false) — which means it must be an instance of the meta-model class for a
function, method, or slot. The other formal objects do not have parameters or do
not return a value — such as invariants, classes, and demons — are ruled out.

An issue is also created noting the need to “maintain” the new invariant.
Invariants are a formal description of what the system must do, but they provide
no description of how the system should do it. In the process model used in this
version of the Concept Demo, invariants may be maintained before the complete
set of requirements have been described. This is an iterative spiral approach to
development. Another (waterfall like) approach would be to require all
invariants to be created before any maintenance actions are defined.

3.4.2.5 Analyze process. The task to formalize the control requirement is marked
as completed. New tasks are created to resolve the issue dealing with the
undefined map named “controlled” and to maintain the invariant. Note the
messages in the Output Window: “Adding RESOLVE REFERENCE TO
UNDEFINED MAP NAMED CONTROLLED to agenda” and “Adding
MAINTAIN CONTROL INVARIANT to the agenda.” The agenda is prioritized
and the undefined map task is determined to be the most important task to
accomplish.

3.4.2.6 Update presentations. The invariant is added to the Semantic Net
presentation and the “formalizes” link from the invariant to the informal
hypertext version of the control requirement is drawn.

3.4.3 Resolve a Problem with the Completeness of the Specification This task
corresponds to scenario element “3.4.3.4 Intelligent Assistance in the
Requirements Acquisition Process.”

3.4.3.1 Invoke task. This task is invoked similarly to the previous one - via a
process-based presentation accessed from the control panel. Note that the
invocation of the task is greatly simplified by the fact that most of the parameters
(e.g., the name and domain type for the map) have already been stored on the
task as part of the intelligent assistance provided by the tool. All these
parameters can be determined by the context of the reference to “controlled” in
the invariant. the user need only tell the system the type of map (a function,
method, or slot) and the range type. The range type can also be inferred, but this
capability hasn't been implemented.

3.4.3.2 Execute task. The execution of this task is simple, since there is only one
atomic task capable of resolving the issue.

3.4.3.3 Execute transformations. The transformation executed for the task is a KB
manipulation transformation adding the new slot to the knowledge-base.

3.4.3.4 Analyze products. The incompleteness issue regarding the control
invariant is marked as resolved. In addition, there was another issue regarding a
function that referenced controlled. This issue is also marked as resolved. Note
the Output Window messages: “Resolving issue UNKNOWN-NAME-ISSUE-1"
and “Resolving issue UNKNOWN-SLOT-OR-FUNCTION-ISSUE-1.” The issues
are marked as being resolved by the currently executing task.

3.4.3.5 Analyze process. The task for creating the formal definition for
controlled is removed from the agenda. Note the Output Window message:
“Removing task RESOLVE UNDEFINED REFERENCE TO CONTROLLED from
the agenda.” The agenda is prioritized bringing the task to maintain the invariant
to the top.

3.4.3.6 Update presentations. There are no presentations visible in the scenario
that are appropriate for viewing the new attribute so the only interface update is
the description of the new attribute in the Output Window.

3.4.4 Task Recording

It is possible to step back and see how the tasks that we have executed have been
recorded in the Concept Demo. If we select “Graph History” from the “History”
icon in the Control Panel, we will see a (single-branch) tree graph of 10 nodes.
Each node represents an atomic task that was executed in the current workspace.
The last three nodes in the tree: “Added Requirement Control Requirement”,
“Added Formal Definition for Control Requirement”, and “Defined Map Named
Controlled” are the three tasks that we just executed. The other nodes are tasks
that were executed before the demo image was saved to set up the workspace for
the demo. We could replay any task or undo the effects of the tasks that came
after a task by moving to the state that resulted from the task. If we were to move
to a state that resulted from a previous task, the knowledge-base and the

3-10

presentation-based interface would be updated. If we were to proceed from that
state, the development history graph would acquire another branch.

Build Air Traffic

Management
| |
Elicit Air Traffic Develop Air Traffic
Management Management
Requirements
Gather Air Organize Air Vailidate Air Formalize Air Resolve Issues Elaborate Air
Traffic Traffic Traffic Traffic for Air Traffic Traffic
Management Management Management Management Management Management
Requirements Requirements Requirements
Resolve Syntactic Analysis
Formalize Control Issues for Air Traffic Maintain
Requirement Management Control
Add Requirement h
Control Resolve Reference to Undefined Invariant
Requirement Map Named Controlled
Add Formal Definition for I
Control Requirement Define Map
Named Controlied

Figure 3-3: Subtask Hierarchy for Example Tasks

In addition to viewing the atomic tasks, we can see the context for these tasks in
relation to higher level supertasks. This can be accomplished by clicking left on
the kb-module that the objects we have been working on are a part of (“Air
Traffic Management”) in the “KB Modules: Used by Relations” window and
selecting “Graph Task Hierarchy”.

Selected portions of the task hierarchy, relevant to the three example tasks
discussed above, are shown in Figure 3-3. The tasks discussed above are
highlighted in bold. Figure 3-3 illustrates how the tasks we have been executing
are automatically incorporated as part of higher level supertasks. This provides
context for understanding the rationale behind the tasks. It also provides
opportunities for propagating the effects of individual tasks back up to group
level tasks for project management and activity coordination. The high-level
tasks in figure 3-3 (e.g., Build Air Traffic Management, Elicit Air Traffic
Management Requirements) are instances of the Project Management Assistant
task class. All legal project management operations (assign a budget, mark a
milestone as completed, etc.) can be performed on these high-level tasks.

3.5 Implementation of the Concept Demo Architecture

3-11

This section describes the implementation of the architecture presented above. It
will be of interest only to readers who want to maintain or extend the Concept
Demo. Other readers are urged to skim or skip this section.

Certain parts of the architecture are described in detail in section “5.4
Implementation Details” in the Concept Demo User's Manual. In these cases only
references to the appropriate sections in the manual are given here. Section 5 of
the User's Manual also contains additional information that is relevant to the
following material such as a detailed descriptior. ~ the Extended Refine
Specification Language (ERSLa).

3.5.1 Invoke task

Invoking tasks in the Concept Demo is done through the context-driven menu
system. This system is explained in detail in sections 5.4.2.1 and 5.4.2.2 in the
Concept Demo User's Manual.

3.5.2 Execute task

Execution of a task is accomplished by sending the task instance an “execute-
task” message defined using the ERSLa method construct. This does not utilize
any inferencing. Instead it relies on declarative knowledge about the kinds of
tasks that can solve particular problems. This information is stored in the
“possible-super-task-classes” slot for each task class.

The protocol for executing a task is to first determine if the task is atomic or not.
If the task is atomic and all its parameters are instantiated, it is sent an “apply-
task” message. If it is an atomic task and it requires parameters from the user,
then it is sent an “interactive-execute-task” message. Interactive-execute-task will
utilize task parameters that have been provided as a result of intelligent
assistance and will prompt the user for any remaining ones.

If a task is not atomic, it is decomposed according to the value of its “Task-
Decomposition-Method” slot (this is an example where multiple inheritance
would have been useful). If the value is “exclusive-or-decomposition” then the
task has two or more subtasks, either of which could satisfy its goal. The system
will put up a menu with the possible subtasks and prompt the user to select one.
The selected subtask will be sent an execute-task message. If the task-
decomposition-method is “sequential-decomposition”, then the task has a
sequence of subtasks which must be executed in order and each task in the
sequence is sent an execute-task message. There are other defined types of
decomposition such as “parallel” that have not been completely implemented.

The files for tasks and task execution in the Concept Demo are all under the
../ concept-demo/main directory. The relevant files are cd-tasks, cd-tasks-hlec,

3-12

cd-tasks-lisp, cd-task-classes, basic-cd-task-methods, cd-task-methods, issue-
resolution-tasks, and set-subtask-classes.

3.5.3 Execute transformations.

All transformation! functions end in “-hlec”2 . These functions are defined in
files under the ../ concept-demo/main directory that begin with “hlec-". The
transformation functions and the atomic tasks for those functions are generated
automatically. This is done using a simple grammar called the “hlec grammar.”
In each file that contains transformation functions, there will be definitions at the
end of the file in the hlec grammar. The hlec grammar defines how to name
instances of the task (using its parameters), the name for the transformation
function, text patterns used to describe the task (also using its parameters), and
the superclass for the task class that will be created.

For example, the bundle transformation is defined in the file “hlec-bundle.re”. At
the bottom of the file is the following definition:

! in-grammar(‘hlec-grammar)

hlec bundle-template
context-name-pattern [“Transferred slots to”, “1”]
context-description-pattern [“Bundled”, “0”, “creating new class”,
“1”, “and new relations”, “2”}

This will create a template that will be used to create the task class and the
transformation function for the Bundle task. As one loads the Concept Demo, the
function “cd::generate-hlecs” is called. It will generate task classes and
transformation functions for all instances of the hlec class. Generate-hlecs can
also be called with a keyword argument during development to regenerate new
or changed transformation functions. For all instances created with the hlec
grammar, generate-hlecs will call the function generate-hlec to create the
appropriate function and class. Here is what generate-hlec would do for the
bundle template:

1) Create a class called bundle-task. Since there is no task superclass specified in
the hlec definition, the default superclass of evolution-transformation would be
used as the superclass for the bundle-task class.

1 Note that, in this context, transformation simply refers to the function in the body of an atomic
task and includes actions such as the invocation of an editor.

2 The Specification Assistant originally referred to evoluation transformations as "High-Level
Editing Commands" or HLEC. Our original implementation of the task function handled only
these evolution transformations (at the time called HLECs). The reference remains "under the
hood" of the Concept Demo to this day.

3-13

2) Look for a function in the CD package called “bundle”. If no such function is
found an error is signaled. If the function is found, a new function called bundle-
hlec is generated. This new function wraps code around the bundle function to
store the arguments of the executing task, save the state of the knowledge-base,
update presentations, etc.

To invoke an instance of the bundle-task from a product-based presentation,
there must be a context-driven menu option that calls the function bundle-hlec.
Calling this function will result in an instance of the bundle-task being created.
To invoke an instance of the bundle-task from a process presentation, the task
must be generated as a result of intelligent assistance with some or all of its
parameters already instantiated. It could then be accessed from a process
presentation and sent an execute-task message.

The relevant files for transformation functions are all under the

../ concept-demo/main directory. They are all files beginning with the prefix
“hlec-" as well as hlec-lisp, create-hlec, create-hlec-lisp, hlec-grammar, hlec-
foundations, generate-hlecs-lisp, initialize-hlecs-lisp, and composite-hlecs.

3.5.4 Analyze products

The function update-agenda is called from within each generated hlec function.
This function first calls update-newly-resolved-issues which looks at all the
existing issues and tests if their conditions for resolution are now satisfied. It
sends a make-issue-resolved message to all issues that are now satisfied. Update-
agenda then calls analyze-current-state for the current kb-module. Analyze-
current-state calls syntactic analysis and resource analysis (these are very similar
to the static analysis and resource analysis routines in the Specification Assistant)
for that module. Syntactic analysis captures messages generated by the Refine
compiler (see sections 4.5.6 and 4.5.7 in the Refine User's Guide) and turns them
into appropriate instances of subclasses of the issue class. Resource analysis
compares information from re::flow-datum attributes to the legal access
specifications (used-by, exports, etc.) on ERSLa KB modules and generates issues
for objects that violate the KB module access specifications.

The relevant files for product analysis are all under the

../ concept-demo/main directory. They are:

static-analysis, resource-analysis, method-op-resource-analysis, kb-states, and
create-resource-analysis-issues.

3.5.5 Analyze process
After updating existing issues and creating new issues, update-agenda calls

create-tasks-for-module which looks at all new issues and attempts to create
possible resolution tasks.

3-14

The relevant files for process analysis are all under the ../ concept-demo/main
directory. They are basic-cd-task-methods, cd-task-methods, issue-resolution-
tasks, and agenda.

3.5.6 Update presentations

The Concept Demo presentation-based interface is discussed in detail in section
5.4.2 of the User's Manual.

3.6. Evolutionary Development of a Product-Level KBSA

As discussed in the introduction to this section, the main design goal for the
Concept Demo was to develop an architecture for a product-level tool that could
provide dramatic improvements over existing CASE tools using current
knowledge-base and CASE technology, while also supporting evolution into a
full-fledged KBSA. In this section, we discuss how the Concept Demo
architecture meets this goal. We will refer to the product-level tool that could be
built using existing knowledge-base and CASE technology as a “Knowledge-
Based CASE Tool” or KB-CASE. We will refer to the tool that the knowledge-
based CASE tool would eventually evolve into using the traditional term
“Knowledge-Based Software Assistant” or KBSA.

3.6.1 A Knowledge-Based CASE Tool

The Concept Demo illustrates that it is possible to build a tool today that would
look to users like a traditional CASE tool, while providing many of the benefits of
formal specification languages and process-based environments. The
“transformations” used by such an environment could consist primarily of tool
invocations and low-level specification evolution transformations that replicate
changes made using existing tools on representations such as E/R and data flow
diagrams. The code generation for such a tool would depend on the non-
functional requirements for the system being developed. For single user systems
running on powerful machines such as workstations or advanced PCs, code
generation could simply consist of compiling the executable specification
language. For systems that required standard types of architectures (such as
multi-user, client-server applications) meaning-preserving transformations can
be developed with those specific architectures as targets. For example, high-level
specifications could be annotated to indicate client-processes and server-
processes and code could then be generated based on those annotations. Finally,
for systems with very hard non-functional requirements (such as custom
designed, highly distributed systems) code generation could include both
meaning-preserving transformations and hand coding. Even where hand-coding
was required, KB-CASE’s front-end and general process support would make the
KB-CAGSE tool a dramatic improvement over existing CASE technology.

3-15

A KB-CASE tool would provide the following advantages over current CASE
tools.

Conceptual integration of graphic representations. In traditional CASE tools,
there are no formal semantics for the various representations used, or there is
only one primary representation which may have a formal basis (e.g., state
charts) but can only describe certain aspects of the system (such as control flow)
and makes specification of other aspects (such as constraints on static data) very
difficult. In a KB-CASE tool, the graphic interfaces would be a front end to the
specification language. The specification language would provide a consistent
semantics for each representation and for understanding how one representation
relates to another.

Analysis and prototyping. The formal semantics of the underlying specification
language would facilitate writing analysis routines, because that specification
language would be independent of the graphic interfaces. The executability of
the specification language would provide prototyping capabilities early in the
life-cycle.

Process traceability, guidance, and feedback. The KB-CASE tool would be able
to use the Concept Demo architecture to provide sophisticated process support
such as keeping track of the rationale for design steps, describing problems,
suggesting solutions, tracking development steps against a process model,
automating collection of project management data, and automating routine
project-management tasks.

3.6.2 Evolution to a KBSA

There are two types of issues that must be addressed to transfer new technology
such as KBSA: social issues and technical issues. The architecture of the Concept
Demo addresses both types of issues for the evolution from a KB-CASE tool to a
KBSA.

3.6.2.1 Social Issues: Acceptance of New Techniques and Styles of Work

If we currently possessed a product-level KBSA that could demonstrate an order
of magnitude improvement in productivity for users trained in formal
specification and other KBSA techniques, the transfer of such a KBSA into every
day use in the DoD and U.S. industry would still be a difficult task. KBSA
requires the use of many new techniques. Some of these techniques — such as
iterative development and object-oriented design and programming — are
already gaining wide acceptance. However, other techniques — such as formal
specification languages and process-based environments — are not currently
accepted by most developers. In our experience presenting KBSA concepts to
developers, we have encountered skepticism about the value of formal
specification languages, vis-a-vis the cost of learning to use them. Similarly,

3-16

several experiments with process-based environments show that people often
view such environments as intrusive and have very negative reactions to them.

The Concept Demo architecture facilitates the acceptance of formal specification
languages and process-based environments by providing many of their
advantages, while preserving familiar representations and work styles. This will
allow developers to adopt the new KBSA techniques gradually. Understanding
will come with use . Ambitious developers will be curious about the underlying
KB repository representation and wil! naturally begin to investigate and use the
formal specification language in addition to the familiar graphic representations.
Similarly, the benefits of a process-based environment could initially be provided
through interfaces that were primarily product-oriented — as are almost all
current commercial CASE tools. As developers began to understand and accept
the idea of process recording, feedback, and guidance they would gradually
adopt process-based representations.

3.6.2.2 Technical Issues

Our experience with KBSA techniques leads us to conclude that while formal
languages and transformations can cover many of the types of development
activities needed to develop actual systems, there are still gaps in the coverage
provided by this approach. We believe that it is not currently possible to field a
product that would be completely based on transformations and formal
languages and capable of building most types of systems. Thus, a central
technical issue to solve in regard to transferring KBSA technology is to develop
an architecture that can smoothly integrate conventional and KBSA development
representations and techniques. This integration should be done in a modular
fashion, so that individual tools that use conventional representations and
techniques can incrementally be replaced by KBSA tools in a way that minimizes
the effect on the rest of the environment.

As discussed above, the Concept Demo architecture achieves this integration of
traditional tools with KBSA tools in one consistent process-based environment.
The task structure in the Concept Demo can be used to invoke, record, and
suggest the use of manual and transformation-based tools or a combination of
the two.

The modular nature of the architecture facilitates incremental replacement of
conventional tools by KBSA tools. By separating out interface, analysis,
product/ process representation, and transformation into distinct knowledge-
base modules, it is possible to add or replace components in any of these areas
with little or no impact on the rest of the environment. Some of the specific ways
that the Concept Demo architecture provides this modularity are:

* The presentation-based interface separates the display and update of
the knowledge-base from the transformations. Thus, transformations can

3-17

be written and added with virtually no concern for user-interface
updating. Similarly, new presentations can be added without altering the
transformations.

* The general “Accept Values” and context-driven menus functionality
further modularizes the interface by separating out the invocation of
tasks from specific presentations. This makes it possible to specify how
and when to invoke tasks independently from specific presentations. It
also makes it possible to add menus for the invocation of new tasks
without modifying the code for existing presentations.

* The separation of the analysis of products and the analysis of process
makes it possible to add new analysis routines that can be used by
developers, even when the process guidance functionality does not yet
exist to generate tasks based on the analysis. This is currently done in the
Concept Demo, which utilizes all of the error and warning messages
generated by the Refine compiler to generate issues that can be very
useful tor developers, even though the process analysis functionality is
only capable of generating suggested resolution tasks for a few of the
most common types of issues.

3-18

4 The Formal Validation Extension to the KBSA Concept Demo
Project

The goals of the formal validation extension to the KBSA Concept Demo project were to study
the techniques used in the KBSA paradigm to improve the software development process, iden-
tify development phases where formal validation is necessary, and then explore formal validation
techniques that can be applied to those phases. The KBSA Concept Demo is well-suited to the
application of formal techniques. Its use of a formal specification language encourages the use
of formal techniques for specification validation and verification, and transformation of specifica-
tions into efficient code using formal meaning-preserving transformations. The Software Refinery
environment that the Concept Demo is built on also allows developers to treat programs as data
and to manipulate them formally.

In the KBSA paradigm, the requirements of a software system are acquired, analyzed, and
formalized to obtain a formal software specification. The formalization process is an evolutionary
one that starts with a high-level preliminary specification and ends with a detailed, formal spec-
ification. The formal specification is transformed into an efficient implementation using a trans-
formational program derivation system such as the Development Assistant. Meaning-preserving
transformations (MPTs) are used in this process. Once the transformations used are proven to
be meaning-preserving, formal validation is not necessary.

Evolution transformations (ETs) are used to formalize informal requirements to produce a for-
mal specification. ETs are meaning-changing transformations that introduce systematic changes
into the specification at a syntactic level. However, the ET approach leaves the task of validating
the constructed specification to the user. A formal validation component can provide valuable
assistance to the user in this task.

After further investigation, we determined that the task of validating large, formal speci-
fications is as difficult as validating programs. However, the use of ETs in the specification
development process allows us to incrementally validate the specification as it is being developed.
For incremental validation, ETs must produce small, well-defined changes to the meanings of
specifications. We therefore analyzed the ETs in the Concept Demo and the Knowledge-Based
Specification Assistant to determine if they produced small, meaningful changes. Section 4.1
presents our analysis of some of these evolution transformations. Unfortunately, we found that
these ETs work at a syntactic level; they only ensure that the resulting specification is syntacti-
cally correct but it might not be semantically meaningful. New ETs were needed to assist in the
incremental validation process.

To find such ETs, we conducted a case study in formal specification development. We de-
veloped a formal specification of the Aesthetic Graph Layout (AGL) problem (used as part of
the Concept Demonstration system and descritcd in an earlier report) paying special aitention
to the process of formalization. This study is described in Section 4.2. As a result of this study,
we realized that the process of formalization can be best suprirted by reuse: the existence of a
repository of validated, reusable components that can be retrieved, adapted, and composed can
significantly simplify the process of specification construction and validation. The operations for
retrieval. adaptation, and composition are the new ETs in the specification development process.
We found that ordinary adaptation and composition operators resulted in specifications whose
properties could not be easily determined by their components. The adaptation and composition
operations in a reuse environment should precisely identify parts that change as a result of their

application; these operations should be based on a theory of reuse.

We have since started work on the development of a theory of reuse. The theory of reuse
will have operations for retrieval, adaptation, and composition of reusable components. Some
composition operations resulting from our efforts in this direction are presented in Section 4.3.
An executable implementation of these operations is described in Section 4.4. In future, we will
continue our work in this direction to explore the operations in the theory of reuse in greater
detail and consider the possibility of implementing algorithms for some such operations.

4.1 Analyzing Evolution Transformations

Here we present an analysis of a representative sample of evolution transformations in the Knowledge-
Based Specification Assistant and the KBSA Concept Demo to evaluate their suitability for in-
cremental validation. We present the following ETs: absorb class, create attribute inverse, delete
KB object, redefine class, and splice communicator.

We assume an algebraic semantics for the specification language [Wirsing90]. We analyze
each ET by the way it changes the class of algebraic models of the specification. We describe this
change using specification constructor operators discussed by Wirsing [Wirsing90).

4.1.1 Absorb class

It takes an absorbee class and an absorber class and the absorber absorbs the absorbee.
Let A be the absorber and B be the absorbee. Let D;...D, be the descendents of B. The

following actions need to be performed to get a meaningful specification as a result of applying
this ET:

¢ Redefine all the attributes and methods of B for A. This includes all the methods and
attributes inherited by B from its ancestors and which are exported by B or any of its
descendents.

e Change the subsort relationship of the children of B to make them children of A.
e Delete B from the specification.

Let SP be the complete specification before the ET is applied. The models of the new
specification obtained as a result of applying this ET to SP can be related to the models of SP
as follows:

1. Extend the models of SP by adding sorts D¥...DY as subsorts of A (where each D?is a
copy of the corresponding D;), adding operations to A corresponding to each attribute and
method of B, and adding axioms to A corresponding to the axioms of B. If some class E
has a method f that has B or some D; in its rank, then define a new method f%that has A
or the corresponding D?in its rank.

2. Derive the result of step 1 using a specification morphism that forgets B, its descendents,
and the old methods in other classes that have been redefined.

3. Restrict the result of step 2 for all sorts except B, Dy ... D, to get rid of the junk elements
that might be present in the ancestors of B.

4. Rename all D% to D; and f% to f.

4-2

4.1.2 Create attribute inverse

Here we assume that f is a total function.
This ET takes a function f and creates f! .

Case f

1.

2.
3.
4

1.

injective, surjective
injective, not surjective
not injective, surjective
not injective, not surjective
mod(create-attribute-inverse(f,f! , SP)) = mod(SP) when f is bijective.
When f is bijective the axiom added by create-attribute-inverse is Yz f! (f(z)) ==

ILe., it does not create any new junk or confusion.

. mod(restrict(derive(create-attribute-inverse(f,f! , SP)))) = mod(SP)

The axiom being added is: f! (z)=yiff(y) ==z
Here restrict is w.r.t all sorts of SP, and derive forgets f! , i.e., derive is w.r.t. in.

I.e., it may create new junk because f! is a partial function.

. mod(derive(create-attribute-inverse(f,f! , SP))) = mod(SP)

Vz,yz € f1 (y)ifff(z) =y

f! returns a set of the domain type of f. Here there are 2 possibilities. The set of domain
type of f may already exist, in which case this ET does not create any new junk; it simply
identifies all new terms with some sets of the domain type. For this case, derive simply
forgets f! .

The second case occurs when set of domain type of f does not exist in the original specifi-
cation. In this case, a new carrier set for this set of domain type of f is created. Here derive
simply forgets this new carrier set as well.

. mod(restrict(derive(create-attr.oute-inverse(f,f! , SP)))) = mod(SP)

Because f! is partial, it can generate junk in the set of domain type of f. If the set of
domain type of f already existed, restrict will get rid of this new junk. On the other hand,
if the set did not exist, derive forgets the whole sort and the junk wont matter anyway.

The axiom added is Vz,yz € f! (p)iff(z)=y f(x)=yA f(2)£y=> 2z LE)f (¥)

4.1.3 Delete KB object

Deleting an axiom:

Mod(delete([Z, E),e)) = C where e is an axiom being deleted, C is a class of algebras, and
[Z, E] is the specification on which delete acts. C + [Z,e] = [Z, E].

We are going to ignore this because the result of deleting sorts or operations symbols without
clean-up results in a non-specification. (A specification can only use symbols in the language
(signature)).

4-3

4.1.4 Redefine class

This moves a class from one point in the hierarchy to another. This class, C, could inherit
properties from its old superclass, C,. Also, C could be used or imported by other classes. When
C is moved, all its children move with it. All the properties that it inherits from C,, that are
needed for defining things in C or its children, are redefined.

The meaning changes as follows. First a C' is added at the new location, and wherever C' was
being imported, C’ is also imported. Whenever ihere is an axiom of the form ¢(f) where f is a
function symbol with C in its rank we add an axiom of the form, ¢'(f'), which requires adding a
new operation symbol f’ with C replaced by C’.

Then we delete C using the derive operation and use the restrict operation to get rid of all
references to C in all classes importing C originally. Then we rename C’ to C, f' to f, and so on.

We repeat this process of replacing C by C’ for all descendant classes of C.

4.1.5 Splice communicator

Class A has an attribute f of type F which it does not export. Class B has a function g which
needs the value of f(a). So a new attribute h of type C is added to class A. Class C has an
attribute k of type f. An axiom is added to class A equating the values of attributes f(a) and
attribute k(h(a)). A exports h and C exports k. Thus B can now access f(a) through k(h(a)).

4.1.6 Conclusion

The ETs in both KBSpecA and the Concept Demo were designed to introduce systematic changes
into specifications. They provided high-level editorial and book-keeping support to ensure that
the resulting specifications were syntactically correct, that is, the specifications could be parsed
correctly by a specification language parser. However, the ETs were not designed to produce
semantically meaningful specifications, that is, the resulting specifications could be inconsistent
or incomplete. In addition, the ETs were not intended to be used for incremental validation, and
hence were not designed to produce small, identifiable changes in the meaning of the specification.
Since a small syntactic change can change the meaning of a specification significantly, application
of ETs can produce large semantic changes in the meanings of specifications. Therefore there is
a need for designing new ETs that can produce such small, identifiable changes for assistance in
evolutionary development with incremental validation.

4.2 An Algebraic Specification of an Aesthetic Graph Layout Problem

The industrial approach to developing software is to go directly from informal requirements to
code. Code is then validated against requirements by proving that it meets the requirements.
But code contains optimizations that spread information and implement simple abstractions with
complex realizations [?]. These optimizations hinder understanding and analysis of code, mak-
ing validation extremely hard. Any errors that are detected during validation cause extensive
rework. Most seriously, the difficulty of the validation task significantly increases the likelihood
of overlooking errors in the code. These overlooked errors can potentially be hazardous in critical
applications.

Validation can be made easier by first developing a formal specification from the requirements
and then validating the specification against requirements [?, ?]. Validating specifications is casier

1-4

than validating code because specifications contain no optimizations or implementation details,
making specifications easier to understand and analyze. As many studies have shown [?], the
amount of work required to correct software errors is a function of the phase in which the cor-
rections are made. Since specification construction occurs very early in the software development
process, the amonnt of work required to correct errors in the specification is relatively small. Also,
the likelihood of finding errors or inconsistencies is increased because understanding specifications
is easier than understanding code.

By introducing specification construction and validation into the software development pro-
cess, we can divide the process into two parts:

1. Construction of validated formal specifications from requirements.
2. Derivation of correct implementations from validated specifications.

We have used this process to construct a formal specification for an aesthetic graph layout
(AGL) problem and to derive an implementation from this formal specification. Here, we focus our
attention on the specification construction process. The implementation for graph layout derived
from the formal specification is described elsewhere [?]. An extended version of the specification
described here is being used to develop an industrial strength implementation of an aesthetic
graph layout system that will be part of a commercial product.

The rest of this paper is organized as follows. In Section 4.2.1, we describe the informal re-
quirements for the aesthetic graph layout problem. We describe the development of the formal
specification itself in Section 4.2.2. We emphasize the process of formalization as opposed to the
constructed formal specification. We want the specification to have the following properties: cor-
rectness, completeness, consistency, abstractness, readability, and executability. In Section 4.2.3,
we analyze the specification construction process for each property mentioned above and support
our arguments with examples from the case studv. We describe the difficulties encountered dur-
ing the formalization process and conclude by suggesting technological advances that can help
alleviate such difficulties. Appendix ?? contains the complete text of our specification.

4.2.1 The Aesthetic Graph Layout Problem

Graphs are ubiquitous as a means of representing information and structure. Their usage has
increased dramatically with the advent of graphic tools. An extensive survey of graph layout
algorithms and tools can be found in [?].

Most approaches to graph layout use one of two modes: static or dynamic. In static graph
layout, a combinatorial description of the graph is used to produce a layout for the entire graph
in a single step. In dynamic graph layout, the graph is constructed incrementally; nodes and
edges are added one at a time, and the system redraws the graph after each step to satisfy the
aesthetic criteria. The dynamic mode of graph layout is clearly more appropriate for interactive
construction of graphs. However, with the dynamic graph layout approach, the topology of the
graph layout can change drastically even for minor changes in the graph. These drastic changes
in topology can make it very hard to follow the semantic evolution of the graph.

In this paper, we discuss a formal specification of a software system that supports an incre-
mental mode of graph layout. In incremental graph layout, nodes and edges are added to the
graph one at a time. The topology of the existing graph layout is preserved in the new embedding,
except for the possible introduction of some new edge crossings. The incremental mode of graph

4-5

layout overcomes the drawbacks of dynamic graph layout by never changing the graph drastically.
The system never repositions nodes; however, there may be edge crossings even for planar graphs.

In the software engineering domain, dataflow diagrams and entity-relationship diagrams are
two of the most widely used representation techniques. Traditionally, these diagrams have been
drawn using the orthogonal graphic standard {?]; every node is a rectangle and every edge is
comprised of horizontal and vertical segments.

In this paper, we specify a system for incremental graph layout using the orthogonal graphic
standard. We use the following primary aesthetic criteria:

¢ minimize the number of crossings among edges,
e minimize the number of bends in each edge, and
e minimize the length of each edge.

In addition, a node cannot overlap another node, an edge cannot cross a node, and an edge cannot
overlap another edge.

4.2.2 Development of the Specification

We express our specification in a formal language based on first order logic. Using this language,
we can describe each abstract data type as a separate module.

We use the following criteria to guide the development of the specification: correctness, com-
pleteness, consistency, abstractness, and readability. To build the AGL specification, we de-
fine a top-level abstract data type called AGL with operations such as add-node. add-edge,
delete-node, and delete-edge. These operations in turn require definition of data types for
node, edge, line segments, sequence of line segments, and point.

In this section, we first describe the specification language and then define each abstract data
type needed for the AGL specification.

4.2.2.1 Specification Language and its Semantics We are interested in describing the
objects in the AGL domain, and the operations that we can perform on the objects. Objects
can be represented as elements of sets and operations can be considered to be functions on these
elements. A collection of sets and functions together form an algebra. Hence a specification
Janguage with algebraic semantics is most suitable for modeling the AGL problem.

A specification in our specification language is a collection of specification components. Each
specification component introduces one new sort and defines operations on this sort and the
properties of these operations. Each specification component SP consists of a new sort, a set of
sorts that are defined elsewhere, a set of operations on the sorts, and a set of axioms (expressed in
first-order logic) {?, ?]. The set of sorts and the set of operations are together called the signature
of the specification. Intuitively, each specification component corresponds to the definition of one
abstract data type.

Definition 1 Spccification Component. A specification component SP consists of a pair <
¥, E > where

o ¥ =< 8 B,F > is the signaturc of SP. S is the new sort, B is the set of sorts used by SP
that are defined in other specification components, and F is the set of operations;

4-6

o F is the sct of azioms of SP. a

For a simple example of a specification component, see the specification of POINT in Appendix ?7?.
The specification language has an algebraic semantics. An algebra is a collection of sets and
a collection of functions on these sets. An algebraic model of a specification is defined as follows:

Definition 2 Algebraic Model. Let SP be a specification consisting of set of specification com-
ponents SP; =< X, E; >,i € I where ¥; =< §;,B;,F; >. Let § = U({S,-} U B;) be the sorts of
SP, F = U F; be the operations of SP, and E = U E; be the axi:)enlls of SP. Then a model of
SP consisiteslof an algebra A =< As, F4 > where e

o As = {A,|s € S}is a collection of sets called the carrier sets of the algebra;

o Fa={fa|f€ F}is a collection of functions of the algebra, such that if the rank of f is
S1y.+.,8n — & , then fy is a function from A, x .-+ x A5, to As;

o A satisfies all the axioms in F. »

For a more detailed description of algebraic semantics, including the meaning of satisfiability of
axioms, see Wirsing’s paper [?] or Srinivas’s report [?].

Given a specification in this specification language there is a class of algebraic models for
the specification. If the specification satisfies certain conditions [?], there exists a distinguished
algebra (up to isomorphism) in the class of algebraic models. This distinguished algebra, called
the initial algebra, has a unique homomorphism to each of the other algebraic models of the
specification. We adopted the initial algebra semantics for our specification language.

4.2.2.2 The AGL Specification Component We use an object-oriented approach to de-
velop the AGL specification. We use existing standard specification components for basic types
such as natural numbers, real numbers, integers, Booleans, sets, and sequences. We then create
a specification component to introduce a new sort called AGL. Conceptually, the sort AGL rep-
resents the displayed graph. We define the operations AGL-edges and AGL-nodes to characterize
the edges and the nodes of the AGL, respectively. Each node of an AGL is rectangular. Each edge
of an AGL is a sequence of horizontal and vertical connected line segments. We define operations
for adding and deleting edges and nodes to the AGL, and for creating a trivial AGL with no nodes
or edges. The AGL specification component has the following operations at this point:

AGL-create: — AGL

AGL~add-node: POINT X REAL x REAL X AGL — AGL

AGL~-delete-node: NODE x AGL — AGL

AGL-add-edge: NODE x NODE X AGL — AGL

AGL-delete-edge: EDGE X AGL — AGL

AGL-nodes: AGL. — NODE-SET

AGL-edges: AGL -—— EDGE-SET

AGL-create creates a trivial AGL. Note that AGL-add-node takes a point, and two numbers
representing the dimensions of the node in addition to the AGL itself as arguments, whereas
AGL-delete-node takes a node and the AGL as arguments. NODE-SET and EDGE-SET are sets
of nodes and edges, respectively.
Most of the axioms associated with these operations are quite simple. The nodes and edges

of an empty AGI, are empty sets.
AGL-nodes (AGL-create) = {

4-7

AGL-edges (AGL-create) =
A node can only be added to an AGL if it does not overlap another node. If this condition is
satisfied, then the nodes of the new AGL are all the previous nodes and the new node.

AGL-nodes (AGL-add-node(p, x, y, g)) =
if 3 ny: NODE, n; € AGL-nodes(g) A NODE-node-overlap(n,n;)
then AGL-nodes(g)
else AGL-nodes(g) U {n}
where n: NODE = NODE-create(p, x, y)

A new node may not overlap any other nodes, but it may overlap existing AGL edges. To add
a node to the graph when it overlaps existing edges of the graph, we first remove the overlapped
edges from the graph and then add the new node. We then add the deleted edges back to the
graph. This requires the addition of some new operations as shown below:

AGL-edges (AGL-add-node(p, x, y, g)) =
if 3 n;: NODE, n; € AGL-nodes(g) A NODE-node-overlap(n,n;)
then AGL-edges(g)
else AGL-edges(AGL~add-edge-set
N (s, AGL-add-non-overlapping-node(p, x, y, AGL-delete-edge-set(s, g))))
where
s: EDGE-SET = {e:EDGE | ¢ € AGL-edges(g) A NODE-edge-intersect(n, e)}
n: NODE = NODE-create(p, x, y)
AGL-nodes (AGL-add-non-overlapping-node(p, x, y, g)) =
AGL-nodes(g) U {NODE-create(p, x, y)}
AGL-edges (AGL-add-non~overlapping-node(p, x, y, g))
AGL-add-edge-set(d, g) = g
AGL~add-edge-set({e} U s, g) =
AGL-add-edge-set(s, AGL-add-edge(EDGE-source(e), EDGE-target(e), g))
AGL~delete-edge-set(d, g) = g
AGL-delete-edge-set({e} U s, g) = AGL-delete-edge-set(s, AGL-delete-edge(e, g))

The operation AGL-add-non-overlapping-node adds a new node to the graph such that the
node does not overlap any existing edges. The operations AGL-add-edge-set and AGL-delete-
edge-set respectively add and delete a set of edges to the graph.

Deleting a node from the AGL has the effect of removing it from the set of nodes and removing
all the edges that have that node as either the target or the source.

AGL-edges(g)

AGL-nodes (AGL-delete-node(n,g)) = AGL-nodes(g) - {n}
AGL~edges (AGL-delete-node(n, g)) =
{e: EDGE | e € AGL-edges(g)
A EDGE-source(e) # n A EDGE-target(e) # n}

Deleting an edge only removes the edge from the set of edges of the AGL.

AGL-nodes (AGL-delete-edge(e, g)) = AGL-nodes(g)
AGL-edges (AGL-delete-edge(e, g)) = AGL-edges(g) - {e}

To add a new edge to the graph, we specify its source node anc its target node. The operation
AGL-add-edge does not change the nodes of the AGL.
AGL-nodes (AGL-add-edge(ny, n2, g)) = AGL-nodes(g)
AGL-edges (AGL-add-edge(n;, n2, g)) = AGL-edges(g) U {EDGE-create(n;,n2,g)}
The complete specification of the AGL componert is shown in Appendix ?7.

4.2.2.3 NODE Since a graph consists of nodes and edges, we need an abstract data type for
graph nodes. In our AGL specification, we assume that each node is rectangular. We specify a
node by the location of its center and its extent from the center along the X and the Y axes.
We therefore need an operation to create a node given a point and two real numbers. We also

4-8

need operations to get the location and size of a node, its corners !, and its boundaries. The

boundaries of a node is the set of the four lines from one corner of the node to another.

NODE-create:POINT X REAL X REAL — NODE
NODE-position: NODE — POINT

NODE-X-extent: NODE — REAL
NODE-Y-extent: NODE — REAL
NODE-top-left-corner: NODE — POINT

NODE-top-right-corner: NODE — POINT

NODE-bottom-left~corner: NODE — PQOINT
NODE-bottom-right-corner: NODE — POINT

NODE-boundaries: NODE — LINE-SET

NODE-position(NODE-create(p, x, y)) = p
NODE-X-extent (NODE-create(p, x, y)) = x
NODE-Y-extent (NODE-create(p, x, y)) =y

NODE-top-left-corner(n) =
point-create(point-x~coordinate(NODE-position(n)) - NODE-x-extent(n)/2,
point-y-coordinate(NODE-position(n)) + NODE-y-extent(n)/2)
NODE-boundaries(n) =
{LINE-create(p;, p2), LINE-create(pa, p3),

LINE-create(ps, ps4), LINE-create(ps, p1)}

vhere
p1 = NODE-top-left-corner(n)
P2 = NODE-top-right-corner(n)
P3 = NODE-bottom-right-corner(n)
Ps = NODE-bottom-left-corner(n)

We can add a new node to an AGL only if it does not overlap any other nodes. Therefore we
need an operation to determine if two given nodes overlap. Two nodes overlap if their boundaries
intersect.

NODE~node-overlap: NODE x NODE — BOOLEAN
NODE-node-overlap(n;, na) =
LINE-SEQUENCE-intersect (set-to-sequence(NODE-boundaries(n;)),
set-to-sequence(NODE-boundaries(ns)})

In the definition above, the operation LINE-SEQUFENCE-intersect takes two sequences of line
segments and determines if they have a point in common. set-to-sequence is an operation used to
convert a set into a sequence.

When we add a new node to an AGL, all the existing edges of the AGL that either intersect
or overlap the AGL must be redrawn. Therefore we need operations to determine if a given edge
intersects or overlaps a node. A node and an edge intersect if they have at least one point in
common. A node and an edge overlap if they have at least two points in common. In AGL. node
and edge overlap is never allowed. whereas an edge is allowed to intersect a node if the node is
either the source or the target of the edge.

NODE-edge-intersect: NODE x EDGE —+ BOOLEAN
NODE-edge-overlap: NODE x EDGE — BOOLEAN
NODE-edge-intersect(n, e) =
LINE-SEQUENCE-intersect (set-to-sequence(NODE-boundaries(n)), EDGE-segments(e))
NODE-edge-overlap(n, e) =
LINE-SEQUENCE-overlap(set-to-sequence(NODE-boundaries(n)). EDGE-segments(e))
Finally, to determine if a given node is a source or a target of a particular edge, we want an
operation to determine if a given point lies on the boundaries of the node.

NODE-has-point-on-boundary: NODE x POINT — BOOLEAN
NODE-has-point-on-boundary(n, p) =
3 1: LINE, 1 € NODE-boundaries(n) A LINE-contains(1, p)

The entire specification for nodes is given in Appendix 77?.

'The names NODE-top-left-corner, NODE-top-right-corner, ctc. are used to improve readability. In reality if.
for example, both the nodc extents are negative, then NODE-top-left-corner will be the bottom right corner of the
node.

4-9

4.2.2.4 EDGE Here we define the abstract data type for edges of a graph. While we can add
a new node to the AGL only if it does not overlap any existing nodes, a new edge can be added to
the AGL at any time as long as the new edge’s source and target nodes exist in the AGL. The line
segments that will form the new edge must not intersect or overlap any other existing nodes, and
must also satisfy our other aesthetic criteria as mentioned in Section 1.2.1. Therefore, to create
a new edge, we need to specify its source and target nodes as well the existing AGL.
EDGE-create: NODE X NODE X AGL — EDGE
Given an edge, we need operations to get its source, target, and its line segments.

EDGE-source: EDGE — NODE
EDGE-target: EDGE — NODE

EDGE-segments: EDGE — LINE-SEQUENCE
EDGE-source (EDGE-create(ny, ns, g))
EDGE-target (EDGE-create(n;, n2, g))

n
no

Creating line segments during edge routing is the most important part of the whole specifi-
cation. The axioms for EDGE-segments specify the properties of all the edges in AGL. Edges
are composed of a sequence of vertical or horizontal line segments. These line segments form a

connected sequence (that is. the end point of each line segment is the beginning point of the next
line segment in the sequence). The line segments should connect the source and target nodes
of the edge, and they should not intersect with any other node (that is. edges should not have
any points in common with nodes other than their source and target nodes). The line segments
should not overlap (that is, have more than one point in common with) the source and target
nodes, and they should not overlap the line segments of any other existing edges of the AGL.
Any sequence of line segments that satisfies these requirements is a candidate for an edge of the
graph. From the set of edge candidates, we choose one of the sequences which best satisfies our
acsthetic criteria to be the actual line segments forming an edge in the AGL.

AGL-most-aesthetic-edge-segments(g, n;, na, EDGE-segments(EDGE-create(n|, ns, g))) = true
AGL-most-aesthetic-edge-segments(g, n;, ns, s) =
AGL-potential-edge-segments(g, 1y, na, s)
A VY sy : LINE-SEQUENCE, AGL-potential-edge-segments(g, n;, na, §1)
= (AGL-edge-segments-cost(g, s) < AGL-edge-segments-cost(g, s1))
AGL-potential-edge-segments(g, n;, ns, s) =
(V 1: LINE, 1 € s = (LINE-horizontal(l) V LINE-vertical(l)))
A LINE-SEQUENCE-connected(s) A NODE-connects(n;, 7o, s)
A AGL-no-other-node-intersections(g, nj, ny, s)
A~ LINE-SEQUENCE-overlap(s, set-to-sequence(NODE-boundaries(n;)))
A 7 LINE~SEQUENCE-overlap(s, set-to-sequence(NODE-boundaries(ns)))
AYc: EDGE, e € AGL-edges(g) => ~ LINE-SEQUENCE-overlap(s, EDGE-segments(e))
NODE-connects{(n;, n-, s8) =
NODE-has-point-on-boundary(7n;, LINE-from(first(s)))
A NODE-has-point-on-boundary(n., LINE-to(last(s)))
AGL-no-other-node-intersections(g, ny, ns, s8) =
¥ n: NODE, (n € AGL-nodes{(g) A n # n; A n # n»)
= ~ LINE-SEQUENCE-intersect(s, set-to-sequence (NODE-boundaries(n)))
AGL-edge-segments—cost(yg, s) =

« :{: LINE-length(1)) * AGL-edge-length-cost-factor())

I € «
+ ((Is| - 1) * AGL-edge~-bends-cost-factor())
+ ((j{: LINE-SEQUENCE-intersections(s, EDGE-segments(e)))

v € AGL—cdgra(y)
* AGL-edge-crossings-cost-factor())

We use AGL-cdge-length-cost-factor, AGL-cdge-bends-cost-factor, and AGL-edge-crossings-
cosl-factor as the constants used to assign weights to cach aesthetic criterion used for AGIL edge
layout.

4-10

A complete specification of the EDGE specification component is shown in Appendix ?7.
Note that - »me of the operations described above are moved to other specification components
based on . ..eir signatures. For example, the operation NODE-connects is moved to the NODE
component since the axiom for NODFE-connects uses operations defined for NODE and does not
use any operations defined for EDGE.

4.2.2.5 LINE Edges in AGL are composed of line segments. Line segments also form the
boundaries of nodes. We specify line segments by their endpoints. In AGL, line segments are
directed. Also, we only consider vertical or horizontal line segments. We therefore need operations
to determine the orientation of line segments.
LINE-create PDINT X POINT — LINE
f E — INT

LINE-vertical: LINE — BOOLEAN
LINE-from(LINE-create(p;,ps)) = pi

LINE-to(LINE-create(p;,p2)) = p2
LINE-horizontal(l) = (POINT-Y-coordinate(LINE-from(l)) = POINT-Y-coordinate(LINE-to(1)))
LINE-vertical(l) = (POINT-X-coordinate(LINE-from(1)) = POINT-X-coordinate(LINE-to(1)))
Since the length of line segments that form an edge is one of our aesthetic criteria, we need
an operation to calculate the length of a line segment. We also need operations to determine if
two line segments have one or more points in common because such operations will be used to
determine if an edge intersects or overlaps another edge or node.

LINE-length: LINE — REAL
LINE-intersect: LINE x LINE — BOOLEAN
LINE-overlap: LINE X LINE — BOOLEAN

LINE-length(l) = POINT-distance(LINE-from(1),LINE-to(1))
LINE-intersect(l;,l2) = 3 p: POINT, LINE-contains(l,, p) A LINE-contains(l2, p)
LINE-overlap(l,, l3) =
3 p1, pa: POINT, p; # pa A LINE-contains(ly, py)
A LINE-contains(ly, p2) A LINE-contains({y, p;) A LINE-contains(ls, p2)

We determine if a given point lies on a given line segment by substituting the coordinates of
the point in the line equation, and by verifying that the point lies in the bounding rectangle of
the line.

LINE-contains(l, p) =
Wy -y s @2-z2))=x=-z) * (P-yIN A(@ <x<z) AW <y <y)

vwhere
x = POINT-X-coordinate(p)

y = POINT-Y-coordinate(p)

Ty = POINT-X~coordinate(LINE-from(1))
Y1 = POINT-Y-coordinate(LINE-from(1))
T9 = POINT-X-coordinate(LINE~to(1))
yo = POINT-Y-coordinate(LINE-to(1))

The complete specification for LINE is shown in Appendix ?77.

4.2.2.6 LINE-SEQUENCE We use a sequence of line segments to form an edge in AGL.
We define all the standard sequence operations such as first, rest, last, insert. delete, and find
for the sort LINE-SEQUENCE. We also define some other operations for line sequences that are
used by other specification components of AGL. To determine if two edges intersect or overlap, we
need operations to determine if two line sequences overlap or intersect. We also need operations
to determine the rumber of times two line sequences intersect.

LINE-SEQUENCE-overlap: LINE-SEQUENCE x LINE-SEQUENCE — BOOLEAN
LINE-SEQUENCE-intersect: LINE-SEQUENCE x LINE-SEQUENCE -~ BOGLEAN
LINE-SEQUENCE-intersections: LINE-SEQUENCE x LINE-SEQUENCE — NAT
LINE-SEQUENCE-overlap(s;, s;) =

3 1, ly: LINE, |} € s; A ly € s53) A LINE-overlap(l;, l3)
LINE-SEQUENCE-intersect(s;, s2) =

34, L: LINE, !; € s1 A Il € s3 A LINE-intersect(s;, s2)
LINE-SEQUENCE-intersections(s;, S2) =

Z Z if LINE-intersect(ly, l3) then 1 else 0

Iy € s 12 € 35
To form an edge, the segments in a line sequence must be joined to each other. We therefore

need an operation to determine if a line sequence is connected.

LINE-SEQUENCE-connected: LINE-SEQUENCE -— BOOLEAN
LINE-SEQUENCE-connected([]) = TRUE
LINE-SEQUENCE-connected({1]) = true
LINE-SEQUENCE-connected(prepend(l;, prepend(lz, s))) =
LINE-to(l;) = LINE-from(l;) A LINE-SEQUENCE-connected(prepend(ls, s))

The complete specification for LINE-SEQUENCE (except for the standard sequence opera-
tions) is shown in Appendix ?7?.

4.2.3 Discussion of Issues

Balzer [?, ?] identifies the following as sources of informality in software specifications:

o Abbreviation. Abbreviation is the use of domain-specific vocabulary to refer to complex
pieces of knowledge in that domain. We view abbreviation as simply a form of reuse. Since
we did not use a repository of domain-specific reusable components, we do not discuss this
issue further in this section.

o Ambiguity and Inaccuracy. Ambiguity in specifications refers to multiple interpretations
of specifications. A specification is inaccurate if it does not reflect the intent of the user.
As both these issues result in incorrect specifications, we treat them as a single is ue in
Section 4.2.3.1.

o Inconsistency. Inconsistency means that the scruantics of different operations, specified by
the axioms, are contradictory [?]. We discuss consistency in more detail in Section 4.2.3.3.

e Incompleteness. A specification is incomplete when descriptions of certain aspects of the
software system are missing from the specification. We deal with this issue in Section 4.2.3.2.

e Poor Ordering. The requirements may be hard to understand if they are not presented in a
proper order. As discussed in >ection ??, poor ordering is not an issue if the specification
is developed using an object-oriented approach.

While Balzer was interested in the specifications themselves, we are concerned with the process
of formalizing specifications.

In addition to dealing with the above sources of informality, we wanted the specification to
be highly readable and abstract. Since we wanted to use our specification as a basis for deriving
an actual implementation of the AGL system, we wanted a specification that could be easily
understood by software developers with little training in algebraic specifications. We also wanted
our specification to be highly abstract to provide maximum freedom to the developers of the
system in choosing among implementation alternatives. Executability of the specification was a
secondary goal that we wanted to achieve if it did not compromise the primary goals.

We discuss how our specification development process was guided by the above goals. We
also describe situations where the goals Lnflicted and we had to make trade-offs in achieving the
goals.

4-12

4.2.3.1 Correctness One of the most important steps in building a specification is its val-
idation with respect to requirements. During specification validation, errors are detected and
eliminated. This is a difficult problem because requirements are non-formal and hence cannot be
directly used to formally validate the specification.

The validation procedure used in our AGL case study can be best described as “validation by
inspection.” We analyzed the axioms for each operation to determine if the operation met the
specified requirements. During this analysis, we identified three principal sources of errors in the
AGL specification.

¢ Ambiguous and Incomplete Requirements

The original set of requiremeuts for the AGL system stated that while edges could not inter-
sect nodes. they could intrrsect other edges. While analyzing the axioms for edg. routing,
we discovered that i1 we allowed edges to intersect with no other constraints, two edges
could have overlapping line segments. After further deliberation, we decided that overlap-
ping edges should not be allowed and added further constraints to the AGL specification
to accomplish that. We feel that detecting ambiguities of this nature early in the software
development process is a principal benefit of developing formal specifications.

¢ Interdependencies Between Requirements

The AGL system has the requirement that an edge should not pass through the source or
the target node. The AGL system also needs to meet the aesthetic criterion of minimizing
the lengths of edges. An carly version of the AGL specification relied on achicving the
former requirement as a side-effect of satisfying the latter aesthetic criterion - if an edge
passes through the source or the target nodes, there is always another ~dge with a shorter
length that does not pass through the node(s). After further analysis, we realized that
this reliance on interdependencies between requirements to nmieet the requirements affected
readability as well as maintainability. For instance if minimizing the length of edges ceases
to be an aesthetic criterion at some point in the life of the software system, the removal of
this criterion {vom the specification would result in a specification that no longer meets one
of its requirements. Therefore we represented the requirement that edges should not pass
through source or target nodes explicitly in the specification.

e Changes to the Specification
The axioms that describe the properties of the operation AG L-add-nodc state that if the
new node being added overlaps any existing edges, the overlapped edges should be removed
and rerouted after adding the node. In an early version of the specification, we discovered
that the edges were being removed and rerouted, but the addition of the new node before
rerouting the edges had been overlooked.

In correcting this error, we introduced another error into the specification. The erroncous
new axiom was as follows:

AGL-edges(AGL-add-node(p, x, y, g)) =

if 3 ny: NODE n; € AGL-nodes(g) A NODE-node-overlap(n,n))

then AGL-edges(g)

else AfGL-edges(AGL-add-edge-set

(s, AGL-add-node(p, x, y, AGL-delete-edge-set(s, g))))
where

s: EDGE-SET = {e:EDGE | e € AGL-edges(g) A NODE-edge-intersect(n, e)}
n: NODE = NODE-create(p, x, y)

POINT-create: REAL x REAL — POINT
POINT-X-coordinate: POINT — REAL
POINT-Y-coordinate: POINT — REAL
POINT-X-coordinate (POINT~-create(a,b))
POINT-Y-coordinate (POINT-create(a,b))

i n
T &

Figure 1: Sufficient Completeness

The use of AGL-add-node in the definition results in a non-terminating sequence of deletion
of an empty set of edges from the graph. We fixed this error by replacing the use of AGL-
add-node in the definition by a new operation called 4G L-add-non-overlapping-node.

4.2.3.2 Completeness Wc used the notion of sufficient completeness (defined below) to en-
sure that our specification is complete. As mentioned earlier, each specification component in the
AGL specification corresponds to the definition of one abstract data type (ADT). We divide the
set of operations defined on an ADT into two sets, § and O. The set S contains the operations
whose range is the ADT being specified. The set O contains operations that map v. .- f{ the
tvpe ADT onto other types; these are often called behavior operations. A data type specification
is sufficiently complete if there exists a subset of its non-behavior operations, called constructors,
such that any expression returning the abstract data type can be reduced, by using the axioms for
substitution, to an expression consisting only of constructors [?, ?]. Figure 4.2.3.2 shows a fraction
of the POINT specification. This specification is sufficiently complete because POINT-create is
the only constructor and expressions containing POINT-X-coordinate and POINT-Y-coordinate
can be reduced to real numbers (here, we make the assumption that our reusable specification
component for real numbers is sufficiently complete).

The general problem of determining whether a specification is sufficiently complete is unde-
cidable [?]. To ensure the sufficient completeness of our specification, we identified the sets of
constructors very early in the specification development process, and defined axioms such that
the most general forms of all the expressions using all non-constructor operations could be re-
duced to expressions consisting only of constructors. This is a general method useful for creating
sufficiently complete specifications and eliminates the need to analyze the final specification for
sufficient completeness. This method can be used more profitably if the specification is modular.
with well-defined dependencies between the components of the specification.

There can be other forms of incompleteness in specifications. Wing, in her study of twelve
specifications of the library problem [?]. identifies six major incompleteness categories:

e Initialization. A specification should state the properties of the initial state of the sys-
tem. Our algebraic specification does not have a notion of states, but the properties of the
operation AGL-create describe the properties of the system before any nodes or edges are
added to the graph.

e Missing Operations. A statement of requirements may be incomplete becanse of its failure
to identify all the useful operations that the system could perform. This incompleteness may
be carried over into the specification. We identified a few potentially useful operations such
as an operation to move a node to a new location or an zperation to change the size of a node
that are missing from our specification. These operations may be added to the specification
in future.

¢ Error Handling. A specification should specify what happens if an error is encountered.
This is most useful, for example, in the specification of a user interface. Since we do not
specify a user interface in our specification, the only possible errors in our specification
are due to some operations being defined as total operations when they should actually be
partial operations. We could not find any such errors in our specification.

¢ Missing Constraints. A statement of requirements may fail to identify all the constraints
to be satisfied by the objects in the system and their operations. This incompleteness may
be carried over into the specification. One such missing constraint in an earlier version of
our specification was the missing requirement that edges should not overlap. This constraint
has been added to the specification presented in Appendix ?77.

e Change of State. A specification may be incomplete if it fails to specify what objects
change from state to state. In an algebraie specification with no notion of states, this type
of incompleteness corresponds to absence of sufficient completeness.

¢ Nonfunctional Behavior. A specification may also be incomplete if it does not address
some issues such as hnman interaction, system constraints, or liveness. We did not consider
any non-functional issues such as human interaction or system constraints such as the size
of the graph or the display screen in our specification in order to give maximum flexibility
to the implementors.

4.2.3.3 Consistency Cousistency means that the semantics of different operations. specified
by the axioms, are not contradictory. Determining consistency is theoretically an undecidable
problem [?]. We ensured the consistency of our specification by making sure at each step in the
specification development process that a new axiom was consistent with all the previous axioms.
The modularity of specifications is a tremendous asset in analysis of this nature because it limits
the size of the sets of axioms that have to be checked for consistency. We feel that tools can
be developed to assist specification developers in constructing consistent specilications. We have
already initiated work in this direction [?].

4.2.3.4 Readability versus Executability As mentioned earlier. a main goal of our experi-
ment was to create a readable formal specification for an acsthetic graph layout system that could
be used by people unfamiliar with the underlying formalism to create an efficient implementation
of the system. We believe that we were successful in creating a specification that can be under-
stood fairly easily by those with some knowledge of logic. We had a secondary objective to create
an executable specification. To meet this objective, we experimented with converting our alge-
braic specification into an executable specification in a wide-spectrum language called Reline [?].
During the course of the experiments, we found that in order to achieve executability, we had to
discard the full expressive power of first order logic. A typical illustration of the kind of problems
we encountered is the definition for the operation LINVE-inferscet. which determines if two given
line segments intersect, As shown below, we originally defined two lines to be intersecting if they
have a point in common, which we Jeel is a very intuitive and readable definition.
LINE-intersect(l|,l») = 3 p: POINT, LINE-contains(/;, p) A LINE-contains{(l», p)

Our effort to translate it into an executable definition resulted in an almost unreadable defi-

nition shown in Fignre 2. In the executable definition, if the two lines ave orthogonal. then they

4-15

LINE-intersect(l; , I3) =
if (LINE-horizental(l;) A LINE-vertical(lp))
then (LINE-contains(POINT-create(POINT-X-coordinate(LINE-to(l3)),
POINT-Y-coordinate (LINE-to((y))),
L)
A LINE-contains(POINT-create(POINT-X-coordinate (LINE-to(l3)),
POINT-Y-coordinate (LINE-to({1))),
I79))
elseif (LINE-horizontal(ly) A LINE-vertical(l,))
then (LINE-contains (POINT-create (POINT-X-coordinate(LINE-to(ly)),
POINT-Y-coordinate(LINE-to(l3))),
1)
A LINE-contains (POINT-create (POINT-X-coordinate (LINE-to({})),
POINT-Y-coordinate (LINE-to(l2))),
1))
else
(LINE-contains (LINE-from({;), l3) V LINE-contains(LINE-to(ly), Il2)
V LINE-contains(LINE-from(ly), !;) V LINE-contains(LINE-to(l3), {;))

Figure 2: Executable Definition of LINE-intersect

intersect if the point formed by taking the x-intercept of the vertical line and the y-intercept of the
horizontal line lies on both lines. If the lines are not orthogonal, then they intersect (or overlap)
if and only if one of the end-points of one line lies on the other line. We abandoned our quest
for executability soon after as it violated our primary goal of readability. Our experiments agree
with the hypothesis of Bidoit et al. [?] that readability can be achieved if it is a primary goal,
and that the pursuit of readability may require relaxing the requirement of executability.

4.2.3.5 Abstractness A specification should describe only the properties of the system (what
the system does) while omitting the implementation details (how it is done). This allows the im-
plementors of the system to choose from a wide range of implementations that the specification can
be refined into. A specification cluttered with implementation details might make the specification
hard to understand and also eliminate the best possible implementation from being considered.
Therefore, abstractness was one of our primary goals. We found that executability and abstract-
ness are often incompatible with each other. The LINE-intersect example in Section 4.2.3.4 is
a good example of this incompatibility. We also found that while abstractness usually enhances
readability, it can also make a specification hard to understand in some cases. In the AGL specifi-
cation, we had to compromise between readability and abstractness in the choice of range type for
AGL-nodes and AGL-edges. The order of addition of edges and nodes to AGL is important; dif-
ferent orders of addition of nodes and edges result in different graph layouts (of the same graph).
The initial version of the AGL specification reflected this conceptual notion: AGL-nodes and
AG L-edges had sequences as their range types; they preserved the order in which nodes and edges
were added to a graph. But later we realized that this was an unnecessary restriction. While it
is necessary to know the order of the addition of nodes and edges in order to layout the graph,
the order information is not a property of the edges and the nodes of the graph. Instead, it is a
property of the graph itself. AGL-nodes and AGL-edges should therefore have sets as their range
types. The inforination about the order in which nodes and edges are added to AGL is reflected

4-16

in the order in which the operations AGL-add-node and AGL-add-edge appear in an expression
of type AGL and can be inferred from the properties of those operations. But the use of sets as
the choice of range types for nodes and edges makes the specification harder to understand since
the ordering information is now buried in the properties of AGL-add-node and AGL-add-edge. In
this case, we opted for abstractness over readability since readability can be improved to some
extent with comments.

4.2.3.6 Operation-Oriented Development versus Object-Oriented Development Spec-
ificztion methods tend to focus on either a system’s operations or its data [?]. An operation-
oriented method identifies the system’s key functions and specifies their properties while describ-
ing data through simplistic models. An object-oriented (data-oriented) method identifies the key
types of objects in the system, the operations performed on the objects, and their properties.
An object-oriented approach is best suited to develop modular algebraic specifications because
sorts and operations in an algebraic specification correspond naturally to classes and methods.
The object-oriented approach is also well-suited to specification construction by reuse and for
constructing reusable specification components. Reusable specification components can be used
repeatedly after verifying them once, thus resulting in fast and reliable development of specifica-
tions. We can build modular specifications that are easy to read and maintain by using reusable
specification components. We therefore used an object-oriented approach to develop our specifica-
tion. We obtained reusable specification components for basic types such as natural numbers, real
numbers, and Booleans, and developed all the other components shown in Appendix ??. From
our experience, we feel that an object-oriented approach can be used very effectively in certain
domains such as AGL where objects and operations can be clearly identified.

4.2.3.7 Negotiations and Trade-offs A primary reason for constructing formal specifica-
tions is to evaluate whether an implementation of the required software system is constructible.
If the specification is not satisfiable, no working implementations of the specification can be con-
structed. Thus constructing a formal specification can help detect impossible (combinations of)
requirements early in the software requirements process. The AGL aesthetic criteria are an ex-
ample of this. It is not possible to construct an implementation of an AGL system that will
independently minimize edge lengths as well as edge crossings. For example, Figure ?? shows
two possible edges between nodes ny and ny. Edge €; has the minimum length and edge ey has
the minimum number of edge crossings. But there can be no edge with the length of e; and the
number of crossings of ¢;. An implementation of AGL must therefore achieve some combination
of the two aesthetic criteria instcad of achieving them independently. In such cases, it becomes
necessary to negotiate with the client and convince the client of the impossibility of meeting all
requirements. The client can then choose from a set of realistically achievable requirements com-
binations. Negotiations and trade-offs such as these are an inevitable part of the specification
building process (7, 7].

The specification developer also has to make other kinds of trade-offs while developing speci-
fications. The definition of the LINE-intersect operation in Section 4.2.3.4 illustrates a trade-off
between executability and readability. The choice of range types for AGL-nodes and AGL-cdges as
discussed in Section 1.2.3.5 demonstrates a trade-off between abstractness and readability. Such
trade-offs are common during specification construction and should be managed by making the
objectives of the specification censtruction process explicit.

4-17

€ 2
n, n,
e 1 .
nl n2 nl n2
€, €,
n, n,
e has minimum length e , has minimum number of crossings

Figure 3: Two possible edges between nodes n; and n,

4.2.4 Conclusion and Directions for Future Work

We found the exercise of writing a detailed formal specification for the problem of aesthetic graph
layout interesting and useful in helping us gain a deeper understanding of the problem and the
process of formalizing specifications. The main difficulty we encountered during the formalization
process was the lack of necessary reusable components. For example, we could have greatly bene-
fited from the existence of a repository with components for specifying point, line, rectangle,
and graph. In general, we would also want mechanisms to retrieve components based on desired
properties, and then adapt and compose such components to tailor them to the current problem.
We found that modifying specification components often results in introducing new errors into
the specifications due to the interdependencies between specification components. This problem
could be substantially alleviated if the specification developer could identify all the potentially af-
fected parts of the specification after each change to the specification. It may be possible to build
a formal transformational system to assist in identifying all such affected parts. A specification
developer would use the formal transformations provided by such a system to systematically in-
troduce changes into the specification at the semantic level instead of using a text editor. Feather
and Johnson [?, ?] introduced the notion of evolution transformations as a means of elaborat-
ing specifications. We are extending that notion to design formal evolution transformations that
can preserve certain properties while changing others. These formal evolution transformations
can also be used to identify changed portions of a specification. We are designing these formal
evolution transformations as operations in a theory of specification reuse [?].

4.2.5 The AGL Specification
4.2.5.1 AGL Specification Component spec AGL =

sorts: AGL

based on: REAL, BOOLEAN, POINT, LINE, LINE-SEQUENCE, NODE, EDGE.
NODE-SET, EDGE-SET, NAT, LINE-SET

4-18

operations:

AGL-create: — AGL

AGL-add-node: POINT x REAL X REAL X AGL — AGL
AGL-delete-node: NODE X AGL — AGL
AGL-add-edge: NODE X NODE x AGL — AGL
AGL-delete-edge: EDGE X AGL — AGL

AGL-nodes: AGL — NODE-SET
AGL-edges: AGL — EDGE-SET

AGL~-add-non-overlapping-node: POINT X REAL X REAL X AGL — AGL
AGL-add-edge~set: EDGE-SET X AGL — AGL

AGL-delete-edge-set: EDGE-SET X AGL — AGL

AGL-potential-edge-segments: AGL X NODE x NODE x LINE-SEQUENCE — BOOLEAN
AGL-most-aesthetic-edge-segments: AGL X NODE X NODE x LINE-SEQUENCE — BOOLEAN
AGL-no-other-node-intersections: AGL x NODE X NODE x LINE-SEQUENCE — BOOLEAN
AGL-edge-segments-cost: AGL x LINE-SEQUENCE — REAL
AGL-edge-length-cost~factor: — REAL

AGL-edge-bends-cost-factor: — REAL

AGL-edge-crossings-cost-factor: — REAL

AGL-nodes (AGL-create) = ()
AGL-edges (AGL-create) = ()
AGL-nodes (AGL-add-node(p, x, y, g)) =
if 3 ny: NODE, n, € AGL-nodes(g) A NODE-node-overlap(n,n;)
then AGL-nodes(g)
else AGL-nodes(g) U {n}
vhere n: NODE = NODE-create(p, x, y)
AGL-edges (AGL-add-node(p, x, y, g)) =
if 3 ny: NODE, n; € AGL-nodes(g) A NODE-node-overlap(n,n;)
then AGL-edges(g)
else AGL-edges(AGL-add-edge-set
(s, AGL-add-non-overlapping-node(p, x, y, AGL-delete-edge-set(s, g))))
where
s: EDGE-SET = {e:EDGE | e € AGL-edges(g) A NODE-edge-intersect(n, e)}
n: NODE = NODE-create(p, x, y)
AGL-nodes (AGL-add~non-overlapping-node(p, x, y, g)) =
AGL-nodes(g) U {NODE-create(p, x, y)}
AGL-edges (AGL-add-non-overlapping-node(p, x, y, g))
AGL-add-edge-set(f, g) = g
AGL-add-edge-set({e} U s, g) =
AGL~add-edge-set (s, AGL-add-edge(EDGE-source(e), EDGE-target(e), g))
AGL-delete-edge-set(d), g) = g
AGL-delete-edge-set({e} U s, g) = AGL-delete-edge-set(s, AGL-delete-edge(e, g))
AGL-nodes (AGL-delete-node(n,g)) = AGL-nodes(g) - {n}
AGL-edges (AGL-delete-node(n, g)) =
{e: EDGE | e € AGL-edges(g)
A EDGE-source(e) # n A EDGE-target(e) # n}
AGL-nodes(AGL-delete-edge(e, g)) = AGL-nodes(g)
AGL-edges (AGL-delete-edge(e, g)) = AGL-edges(g) - {e}
AGL-nodes (AGL-add-edge(n;, n2, g)) = AGL-nodes(g)
AGL-edges (AGL-add-edge(n;, na, g)) = AGL-edges(g) U {EDGE-create(nj,nz,g)}
AGL-most-aesthetic-edge-segments(g, n;, ny, EDGE-segments(EDGE-create(n;, na2, g))) = true
AGL-most-aesthetic-edge-segments(g, n;, nz, 8) =
AGL-potential-edge-segments(g, n;, na, s)
AV s;: LINE-SEQUENCE, AGL-potential-edge-segments(g, n;, na, §1)
= (AGL-edge-segments-cost(g, s) < AGL-edge-segments-cost(g, S))
AGL-potential-edge-segments(g, n;, naz, s) =
(V 1: LINE, 1 € s = (LINE-horizontal(l) V LINE-vertical(l)))
A LINE-SEQUENCE-connected(s) A NODE-connects(n;, na, s)
A AGL-no-other-node-intersections(g, n;, nz, s)
A ~ LINE-SEQUENCE-overlap(s, set-to-sequence(NODE-boundaries(n;)))
A ~ LINE-SEQUENCE-overlap(s, set-to-sequence(NODE-boundaries(n:)))
AVe: EDGE, e € AGL-edges(g) => ~ LINE-SEQUENCE-overlap(s, EDGE-segments(e))
AGL-no-other-node-intersections(g, n;, na, 8) =

AGL-edges(g)

4-19

YV n: NODE, (n € AGL-nodes(g) A n # n1 A n # n3)
=> ~ LINE-SEQUENCE-intersect(s, set-to-sequence(NODE-boundaries(n}))
AGL-edge~segments-cost(g, s8) =

« :E: LINE-length(1l)) * AGL-edge-length-cost-factor())

l € s
+ ((Is] - 1) * AGL-edge-bends-cost-factor())
+ }E: LINE-SEQUENCE-intersections(s, EDGE-segments(e)))

e € AGL-edges(g)
* AGL-edge-crossings-cost-factor())

end spec AGL

4.2.5.2 NODE Specification Component spec NODE =
sorts: NODE

based on: REAL, BOOLEAN, POINT, LINE, LINE-SEQUENCE, LINE-SET, EDGE

operations:

NODE-create: POINT X REAL X REAL — NODE
NODE-position: NODE — POINT

NODE-X-extent: NODE — REAL
NODE-Y-extent: NODE — REAL
NODE-top—left-corner NODE — POINT

NODE-top-right-corner: NODE — POINT

NODE-bottom-left-corner: NODE — POINT
NODE-bottom-right-corner: NODE — POINT

NODE-boundaries: NODE — LINE-SET
NODE-node- overlap NODE x NODE — BOOLEAN

NODE-edge-overlap: NODE x EDGE — BOOLEAN
NODE-edge-intersect: NODE x EDGE — BOOLEAN
NODE-connects: NODE X NODE x LINE-SEQUENCE — BOOLEAN
NODE-has-point-on-boundary: NODE x POINT — BOOLEAN

axioms;
NODE-position(NODE-create(p, x, y)) = p
NODE-X-extent (NODE-create(p, x, y)) = x
NODE-Y-extent (NODE-create(p, x, y)) =y

NODE-top-left-corner(n) =
POINT-create(POINT-X-coordinate(NODE-position(n)) - NODE-X-extent(n)/2,
POINT-Y-coordinate(NODE-position(n)) + NODE-Y-extent(n)/2)
NODE-top-right-corner(n) =
POINT-create (POINT-X-coordinate(NODE-position(n)) + NODE-X-extent(n)/2,
POINT-Y-coordinate(NODE-position(n)) + NODE-Y-extent(n)/2)
NODE-bottom-left-corner(n) =
POINT-create(POINT~X-coordinate(NODE-position(n)) - NODE-X-extent(n)/2,
POINT~Y-coordinate(NODE-position(n)) - NODE-Y-extent(n)/2)
NODE-bottom-right-corner(n) =
POINT-create(POINT~X-coordinate(NODE-position(n)) + NODE-X-extent(n)/2,
POINT-Y-coordinate(NODE-position(n)) - NODE-Y-extent(n)/2)
NODE-boundaries(n) =
{LINE-create(p;, p»)., LINE-create(pz, p3),

LINE-create(p3, pa), LINE-create(ps, pi)}

vhere
P1 = NODE-top-left-corner(n)
p2 = NODE-top-right-corner(n)
p3 = NODE-bottom-right-corner(n)

P4 = NODE-bottom-left-corner(n)
NODE-node-overlap(n,, ny) =
LINE-SEQUENCE-intersect (set-to-sequence(NODE-boundaries(ny)),

4-20

set-to-sequence(NODE-boundaries(ns)))

NODE-edge-intersect(n, e) =

LINE-SEQUENCE-intersect (set-to-sequence (NODE-boundaries(n)), EDGE-segments(e))
NODE-edge-overlap(n, e) =

LINE-SEQUENCE-overlap(set-to-sequence(NODE-boundaries(n)). EDGE-segments(e))
NODE-has-point-on-boundary(n, p) =

3 1: LINE, 1 € NODE-boundaries(n) A LINE-contains(1, p)
NODE-connects(n,, ns, s) =

NODE-has-point-on-boundary(n;, LINE-from(first(s)))

A NODE-has-point-on-boundary(n,, LINE-to(last(s)))

end spec NODE
4.2.5.3 EDGE Specification Component spec EDGE =
sorts: EDGE

based on: LINE, LINE-SEQUENCE, AGL

operations:

EDGE-create: NODE x NODE x AGL — EDGE
EDGE~source: EDGE — NODE
EDGE~target: EDGE — NODE

EDGE-segments: EDGE — LINE-SEQUENCE
/* Standard set and sequence operations for sets and sequences of edges */

axioms:

EDGE-source(EDGE-create(n;, ng, g)) ny
EDGE-target (EDGE-create(n;, na2, g)) = nj
/% Standard set and sequence axioms for sets and sequences of edges */

end spec EDGE

4.2.5.4 LINE Specification Component spec LINE =

sorts: LINE

based on: REAL, BOOLEAN, POINT, NAT

operations:

LINE- Create: POINT X POINT — LINE
LIN : LINE —

LINE-to: LINE — PO
LINE-horizontal: LI
LINE-vertical: LINE
LINE-length: LINE —
LINE-intersgect: LINE x

LI BOOLEAN
LINE-overlap: LINE x LINE

OOLEAN

1:’5
wl

axioms:

LINE-from(LINE-create(p;,p2)) = p1

LINE-to(LINE-create(p;,p2)) = p2

LINE~horizontal(l) = (POINT-Y-coordinate(LINE-from(1l)) = POINT-Y-coordinate(LINE-to(1)))
LINE-vertical(l) = (POINT-X-coordinate(LINE-from(1l)) = POINT-X-coordinate(LINE-to(1)))
LINE-length(1l) = POINT-distance(LINE-from(1l),LINE-to(1))

4-21

LINE-intersect(l;,l3) = 3 p: POINT, LINE-contains(l;, p) A LINE-contains(ly, p)
LINE-overlap(l;, [3) =
3 p1, p2: POINT, p; # p2 A LINE-contains(l;, p;)
A LINE-contains(l;, pa) A LINE-contains(l2, p1) A LINE-contains(l3, p2)
LINE-contains(1, p) =
((y-y) * @ -y =UWx-z) * -y A@ <xLzd) Ay <y <y

where
x = POINT-X-coordinate(p)

y = POINT-Y-coordinate(p)

Ty = POINT-X-coordinate(LINE-from(1))
11 = POINT-Y-coordinate (LINE-from(1))
Z9 = POINT-X-coordinate(LINE-to(1))
y2 = POINT-Y-coordinate(LINE-to(1))

end spec LINE
4.2.5.5 LINE-SEQUENCE Specification Component spec LINE-SEQUENCE =
sorts: LINE-SEQUENCE

based on: REAL, BOOLEAN, POINT, NAT, LINE

operations:

/* Standard sequence operations for sequences of lines */
LINE-SEQUENCE-connected: LINE-SEQUENCE — BOOLEAN
LINE-SEQUENCE-overlap: LINE-SEQUENCE x LINE-SEQUENCE — BOOLEAN
LINE-SEQUENCE-intersect: LINE-SEQUENCE x LINE-SEQUENCE — BOOLEAN
LINE-SEQUENCE-intersections: LINE-SEQUENCE x LINE-SEQUENCE — NAT

axioms:

/* Standard sequence operations for sequences of lines */
LINE-SEQUENCE-overlap(s;, S§2) =
31, l: LINE, I} € s; A ly € s3) A LINE-overlap(ly, [2)
LINE-SEQUENCE-intersect(s;, S2) =
31, la: LINE, I}, € s A ls € sa A LINE-intersect(s;, $2)
LINE-SEQUENCE-intersections(s;, S2) =
Z Z if LINE-intersect(l;, l3) then 1 else 0

lh € sy 12 € 32
LINE-SEQUENCE-connected({]) = TRUE
LINE-SEQUENCE-connected({1]) = true
LINE-SEQUENCE-connected(prepend(l;, prepend(l2, 8))) =
LINE-to(l;) = LINE-from(lo) A LINE-SEQUENCE-connected(prepend(lz, s))

end spec LINE-SEQUENCE

4.2.5.6 POINT Specification Component spec POINT =
sorts: POINT
based on: REAL

operations:

POINT-create:; REAL X REAL — POINT
POINT-X-coordinate: POINT — REAL

4-22

POINT-Y-coordinate: POINT — REAL
POINT-distance: POINT X POINT — REAL

axioms:

POINT-X-coordinate(POINT-create(a,b)) = a
POINT-Y-coordinate (POINT-create(a,b)) = b
POINT-distance(p;,p;) =
sqrt (sqr (POINT-X-coordinate(p;) - POINT-X-coordinate(p;))
+ sqr(POINT-Y-coordinate(p;) - POINT-Y-coordinate(pz)))

end spec POINT

4.3 A Theory of Composition Operations for Software Reuse

The Concise Oxford Dictionary defines composition as “the act of putting together”, “formation”,
or “construction”. In software reuse, composition operations are used to put together two or more
software components to build new software components. Examples of composition include com-
bining the functionalities of different components, identifying the functionality of one component
that is not also provided by another component, or selecting functionality that is common to two
components.

Observe that composition of reusable components to obtain the desired software artifact is
not an easy task. The major problem is in verifying that the result of composition is indeed the
desired artifact. Even if the properties of reusable components are known in advance, it is usually
difficult to determine the properties of the software artifact produced by composition. This is
because composition operations are usually not defined to produce definite identifiable changes at
the semantic level. For software reuse to be more practical, we need to be able to easily determine
the properties of the result of composition. This requirement has the following implications:

¢ We should have a repository of reusable components with known properties, and
e We should have a collection of composition operations with known behaviors.

In this paper, we describe certain composition operations that can be used to compose algebraic
specification components to produce software specifications with certain guaranteed properties. In
addition to illustrating the use of these operations to compose reusable components, we also show
how they can be used for reactive reusable component design. All the composition operations
described here have been fully implemented.

This paper is organized as follows. In the next section, we present a motivating example. The
example depicts the activities in a typical specification reuse scenario. In Section ??, we carefully
design four composition operations and ensure that they are defined uniquely. We present some
properties of these operations in Section ??7. In Section ??, we discuss related work, and finally
present some directions for future research.

4.3.1 A Motivating Example

This example is based on the Improved Many on Many (IMOM) electronic combat decision aid,
version 4.0 [?]. IMOM gives electronic combat planners a quick, accurate way of portraying the
combat scenario to aid in charting aircraft flight paths, determining aircraft visibility to radar,

4-23

A Direction
North

of Travel

Lat,/Long,

Longitude Lines

Figure 4: FAZ is the forward azimuth angle and BAZ is the backward azimuth angle. Note that
FAZ and BAZ are not supplementary angles as the longitudes are not parallel lines.

radar jamming, and so on. We choose a small part of the IMOM system functionality for our
example.

One part of the IMOM functionality is the computation of forward and backward azimuths.
Forward and backward azimuths are the angles between the flight path of an aircraft and the
intersecting longitude lines at two given points on the aircraft’s flight path. Forward azimuth
is the angle made by the longitude at the first given point with the direction of travel (between
the two latitude/longitude points) measured in a clockwise manner. Backward azimuth is the
same but measured at the second latitude/longitude point (see Figure ??). Azimuths (i.e., global
directions of travel) can be used to determine relationships between the aircraft’s flight path and
the intersecting longitudes. These relationships are useful in finding geometric solutions to certain
other problems in the IMOM domain.

Another part of the IMOM functionality is the computation of the elevction of a place, which
is necessary for determining line of sight and terrain masking. The IMOM system uses a database
that stores the elevations of various points on the earth’s surface indexed by the latitude and
longitude. Given the latitude and longitude of a place, the IMOM system either returns its
elevation, or the elevation of a nearest point in the database.

To compute azimuths and elevation at given points, the IMOM system needs to compute the
latitude and longitude of each of those points. The IMOM system computes the latitude/longitude
of a new terrain point using the known latitude/longitude of a nearby point, the angular distance
of the new point from the known point, and the angle made by the arc connecting the two points
with true north (sec Figure 27).

The motivating example is a scenario based on a small part of the IMOM specification. We
focus on the specification of azimuths and elevation. We assume that we have two specification
components initially:

1. Azimuth-1. This component specifies the computation of azimuths. The computation of

4-24

L}
'
1
|
t
[}
]
1

known location

N

angular distance

Figure 5: The latitude and longitude of the terrain point are computed using the location of
the known point, angular distance from the known point, and angle made by arc connecting the
points with true north.

azimuths depends on the earth’s curvature at each of the two given locations. Since the
earth is not a perfect sphere, this component specifies the computation of earth’s curvature
at each of the two points, and uses the exact curvature to specify azimuths. The two
points are specified relative to a known nearby location. This component also specifies the
computation of latitude and longitude of a given point.

2. Elevation-1. This component specifies the computation of the elevation at a given point.
If the point is in the database, its exact elevation is obtained. Otherwise, the average of the
elevations of its four nearest neighbors is used. The location of the point is again specified
relative to a known nearby location. This component also specifie: the computation of
latitude and longitude of a given point.

To construct the IMOM specification, we want a single component that calculates both the
azimuths and the elevation. We compose the two components, Azimuth-1 and Elevation-1.
to get a new component, Azim-Elev-2, that specifies computations of \zimuths and clevations,
and has a single copy of the latitude/longitude computation (assuming that their computations
in the two components are the same). We call this operation join.

The latitude/longitude computation is needed in almost all parts of the IMOM system. We
create a reusable component specifying the latitude/longitude computation by extracting the
common parts of Azimuth-1 and Elevation-1 to get a component, lat-long-3. We call this
operation meet. Thus, we use the meet operation to create reusable components reactively.

In Azim-Elev-2, the determination of the earth’s curvature at each point is computationally
expensive. Moreover, such accuracy is not needed in azimuth calculation. We, therefore, modify
the specification to assume that the earth’s curvature is constant. This modification is performed
either manually or using evolution transformations [?, 7, ?]. The result is a new component
Azim-Elev-4.

For computing elevation at a point, it is sufficient to take its nearest neighbor’s clevation
instead of the average of the elevations of its four nearest neighbors. Again, we make this change
in Azim-Elev-2 either manually or using evolution transformations to get Azim-Elev-5. Note
that the changes to Azim-Elev-2 to get Azim-Elev-4 and Azim-Elev-5 are performed in

4-25

Azimuth-1 Elevation-1

computes ~ Average elevation
earth’s ... Elevation of four neighbors

curvature

Lat/Long Lat/Long | -

Azimuths\ .-~

; y 3
Elevation Azim-Elev-2
Lat/Long

Lat/LL.ong

Parallel dev obment SR Lat-Long-3

Aziny-Ele

Elevation 7

Azimuths

Elevation
Lat/Long

. nstant Curvature
Elevation) of - :

Azimuths X~ IFF kENCE

> Elevation
Lat/Long

Elevation Azimuths

Azim-Elev-6

Aznmuth-)

Elevation-8

Figure 6: The graph of specification evohillfi%)% and design of new reusable components,

parallel.

Next, we want a component that uses the constant curvature assumption for azimutl computa-
tion (asin Azim-Elev-4) and the nearest neighbor for elevation computation (asin Azim-Elev-5).
So we perform a merge operation on Azim-Elev-2, Azim-Elev-4, and Azim-Elev-5; the
part of the specification in Azim-Elev-2 that is unchanged in the two modified components
is combined with the changed parts from the modified components (provided the meanings of the
changed parts do not conflict) to get Azim-Elev-6.

We finally decide that the new azimuth calculation in Azim-Elev-4 and the new elevation cal-
culation in Azim-Elev-5 are important. We want to extract and store them as separate reusable
components. So we get a new azimuth component, Azimuth-7, by subtracting Azim-Elev-4 from
Elevation-1. We call this operation differcnce. Similarly, we ge* a new elevation - mponent,
Elevation-8, by taking the difference of Azim-Elev-5 and Azimuth-1.

The complete specification evolution graph is shown in Figure ?77.

4.3.2 The Composition Operations

In this section we will brieflv look at the desic- criteria, the design process, and the actual
definitions of the following composition ¢ st ious:

e Meet. The meet of two specification components is a component that has information
common to both the components.

o Difference. The difference of two specification components (given in a specific order) is a
component that contains information in the first specification component that is not in the
second specification component.

e Join. Join takes two components and produces a third component that has all the informa-
tion from both the components.

o Merge. Merge acts on three components: a base component, and two components that
have been cvolved from the base component. The result of merge is a component that has
information common to all three components, along with the new or changed infornsation in
the two evolved components. Ncie that join is a special case of merge, equivalent to merge
with an empty base component.

As argued in the introduction, we want operations whose behaviors are known: that is. oper-
ations whose application results in a definite change, and which guarantee certain properties of
the results they produce given inputs with certain properties.

We, therefore, have the following design criteria:

¢ The composition operations should be analyzable for determining the semantic changes they
produce; hence they should be formal.

e They should produce definite, predictable changes to guide their selection and application,
and assist in validation of components produced.

e With input components that have certain properties (e.g., consistency). the operations
should guarantee certain properties of the result (including preservation of important prop-
erties suca as consistency).

4-27

spec STACK
signature

sorts
stack, nat, boolean

operations
zero: — nat
succ: nat — nat
error: — nat
true: — boolean
false: — boolean
create: — stack
push: stack, nat — stack
pop: stack — stack
top: stack — nat;
isempty: stack — boolean;

constructors
zero, succ, true, false, create, push

axioms
pop(create) = create
pop{(push(s, n)) = s
top(create) = error
top(push(s, n)) =n
isempty(create) = true
isempty(push(s, n)) = false
end

Figure 7: Stack specification.

In order to be able to describe the composition operations, we first present our simplified
specification language and its algebraic semantics. Then we define the four composition operations
and ensure that the definitions guarantee uniqueness.

4.3.2.1 Specification Language In the simplified specification language we have chosen for
this discussion, a specification is a theory consisting of a set of sorts, a set of operations, a set
of constructors, and a set of equational axioms [?]. The set of constructors is a subset of the set
of operations. We assume that the specifications are such that every ground term (i.e., a term
without any variables) can be rewritten using the axioms of the specification to a term containing
only constructor symbols. The set of sorts, the set of constructors, and the set of operations are
together called the signature of the specification.

Definition 3 Specification. A specification SP consists of a pair < &, E > where

e ¥ =< S.F,C > is the signature of SP. S is the set of sorts, F is the set of operations,
and C C F is the set of constructors;

o F is the set of equational azioms of SP. |

An example of a specification appears in Figure 27,
The specification Janguage has an algebraic semantics. An algebra is a collection of sets and
a collection of functions on these scts. An algebraic model of a specification is defined as follows:

1-28

Definition 4 Algebraic Model. Given a specification SP =< X, E > where ¥ =< §,F,C >, a
model of SP consists of an algebra A =< Ag, Fa > where

o As = {A;]|s € S} is a collection of sets called the carrier sets of the algebra;

o Fa={fa| f € F}is a collection of functions of the algebra, such that if the rank of f is
S1y...,8p — 8, then f4 is a function from A, X --- X A, to Ag;

e A satisfies all the axioms in E. (]

For a more detailed description of alg ‘braic semantics, including the meaning of satisfiability of
axioms, see Wirsing’s paper [?].

Given a specification in this specification language there is a class of algebraic models for
the specification. If the specification satisfies certain conditions [?], there exists a distinguished
algebra (up to isomorphism) in the class of algebraic models. This distinguished algebra, called
the initial algebra, has a unique homomorphism to each of the other algebraic models of the
specification. We restrict the discussion here to specifications that are guaranteed to have an
initial algebra. Henceforth in this proposal when we say the “meaning of a specification” we
mean its initial algebra.

Next we define the notion of a subreduct. We will use this notion in stating the properties of
most adapt operations.

Definition 5 Subreduct. A subreduct B of an algebra A is an algebra such that all carrier sets
in B are also carrier sets in A and all functions in B are also functions in A.]

We are now ready to define the four adapt operations mentioned earlier.

Definition 6 AMcect. Given specifications S P, and S P, with meanings M; and M, respectively,
the meet of SP; and SP; is a specification S P with meaning M such that

e M is isomorphic to a subreduct of My;
e M is isomorphic to a subreduct of M,; and

o If M’ is any algebra that is isomorphic to a subreduct of M; and a subreduct of M, then
either

— a subreduct of M is isomorphic to M’, or

— M is not a subreduct of M’.]

Informally, the meet of two specifications SP; and SP; can be described as the specification
corresponding to the largest isomorphic subreducts of the meanings M; and M, of the two spec-
ifications. Meet, as defined above, is not unique because the set of subreducts of Af; that are
isomorphic to some subreducts of M; ordered by the subreduct relation need not have a marimum
clement. However, using the axiom of choice, we can show that this set of subreducts S does have
mazimal elements. Fach maximal element of S can be considered to be the meaning of the meet
of the two given specifications.

As one of our design rriteria is to define each composition operation uniquely. we can make the
meaning of meet unique by including only certain interesting subreducts in 8, and by restricting

1-29

the isomorphisms that are considered. These restrictions make S a complete lattice. As a complete
lattice has a top element, § has a unique largest subreduct that is the meaning of the meet of the
two specifications.

The first restriction is to consider only a certain class of subreducts, called constructor sub-
reducts for inclusion in &.

Definition 7 Constructor Subreduct. Let A be the initial algebra (i.e., meaning) of a specification
SP. A subreduct B of A is called a constructor subreduct of A if for each carrier set B, in B
corresponding to some sort s in 5P, all the functions f4 in A corresponding to constructors f of
sort ¢ in S P are also in B. a

We restrict the isomorphisms by specifying a partial mapping o between the signatures of the
two specifications. From a requirements standpoint, the mapping o specifies the parts of the two
signatures that are intended to be the same. Thus, this mapping rules out frivolous matches, and
also ensures that if two subreducts are isomorphic, there is a unique isomorphism between them.
The following definition formally defines the mapping o.

Definition 8 Signature Morphism. A signature morphism o : ¥; — ¥, from signature ¥; =<
9 I} g 1 2
S, Fy,Cy > to signature ¥y, =< 9, I, Cy > consists of a tuple < gg,0p > where

e o5 :.5 — 5, is a function;

e op: Iy — Fyis a function such that if therank of f; € Flis 51,...,8, = sand op(fy) = f2
then the rank of fy is as(s(),...,05(5,) — as(s).

o is a partial signature morphism if cither og, or g, or both are partial functions. u

If for two signatures ¥; and Y,, the signature morphism in : ¥y — Y, is the canonical
embedding that takes each sort or function symbol in ¥, to the same sort or function symbol in
Yy, then inis called the inclusion signature morphism.

If 0 : ¥ — ¥, is a partial signature morphism, then the set of symbols of X, for which o is
defined is called the domain of a. The set of symbols of ¥y which are the images of some symbols
in ¥ is called the codomain of o.

Using this definition of the partial signature morphism o, we can formally define the restricted
isomorphisms between subreducts as follows:

Definition 9 o- [somorphism. Let o : ¥ — ¥y be a one-to-one partial signature morphism,
where ¥ =< §,, F1,C) > and ¥y =< 99, I, Cy > are the signatures of specifications 5P
and 9Py, respectively. Let A and B be the initial models of SP; and SP,, respectively. Then
an isomorphism h : A" — B’ where A’ and B’ are subreducts of A and B respectively, is a
a—isomorphism if the following conditions hold:

e if h maps the carrier set /\fﬂ in A’ corresponding to the sort sy €) to the carrier set B_'gz
in ¥ corresponding to the sort s5 € 95, then 0 must map s to sy;

e if i maps the function fy ,in A" corresponding to the operation f; € Fy to the function
y ,in B corresponding to the operation fy € Fy, then @ must map f; to f;.
2, i g I 2 1

If h: A" — B is a o—isomorphism. then A" and B’ are said to be a—isomorphic. []

1-30

If P, and S P, are two specifications whose meanings are o—isomorphic, then we say that SP;
and S P, themselves are o —isomorphic and we denote this by SP, =, SP,.

Applying the above definition of o—isomorphisms to constructor subreducts of the meanings
of two specifications, we can prove the following theorem:

Theorem 1 Given two specifications SPy =< ¥y, Ey > and SP, =< Y3, E) > and a one-to-
one partial signature morphism o from T; to ¥y, the collection of constructor subreducts of S Py
that are o—isomorphic lo some constructor subreducts of SP, form a complete lattice under the
subreduct ordering.

Proof sketch. If h: A’ — B’ is a o —isomorphism between constructor subreducts A" and B’, then
h is unique. This can be proved by considering terms, and using induction on the depth of terms.

Let P be the set of all constructor subreducts of S P; such that each of them is isomorphic to
some constructor subreduct of SP;. In order to prove that P is a complete lattice it is enough to
show that it is non-empty, that it has a bottom element, and that every subset of it has a least
upper bound [?].

P is clearly non-empty as the empty constructor subreduct is in it and is isomorphic to the
empty constructor subreduct of S P;. The empty constructor subreduct is also the bottom element
of P 2.

For any subset @ C P, the union of all constructor algebras contained in Q is the least
upperbound of Q. This can be proved by showing that the o —isomorphisms for all the constructor
subreducts in @ can be put together to get a o—isomorphism for the union of all constructor
subreducts in Q, which is thus a member of P.

End of proof sketch. a
Henceforth we denote this lattice P of subreducts of 5P, with respect to o : ¥y — X, as
L(SP,SP,,0).

Now we can modify our carlier definition of meet so that meet is unique up to isomorphism.

Definition 10 Mect. Let SP, =< ¥y, F; > and SP; =< L5, F; > be specifications with mean-
ings My and M, respectively and o be a signature morphism from £y to ¥;. The meet of SP; and
S P, (denoted S Py A ,5P,) with respect to o is a specification SP =< ¥, E > where the mean-
ing of SP, M, is isomorphic to the top element of L{SP;.SP;.a) and there cxists an inclusion
signature morphism i : ¥ — ¥, .

At this point, we make two further simplifying assumptions to limit the scope of this dis-
cussion. These assumptions allow us to talk about the results of the operations of the theory
without worrying about the signature morphisms involved. Our first assumption is that the par-
tial signature morphism o is restricted to the symbols that are common to the two signatures,
that is,

domain(o) = range(a) = X, N Y, (1)

Such a signature morphism is called a name signature morphism. With this assumption, we will
denote the meet of two specifications SPy and SPy by SPyASP,.

Our second assumption is that the two given specifications are total @ —isomorphic as defined
helow:

?Note that we did not define algebras to have a non-empty collection of carricr sets

4-31

Definition 11 Total o—Isomorphism. Let o : £; — X, be a one-to-one partial signature mor-
phism, where ¥} =< 51, F},C; > and £, =< S5, F5,C, > are the signatures of specifications
5P, and S P, respectively. Let A and B be the initial models of §P; and § P, respectively. Then
SP; and SP, are total o—isomorphic if there exists an isomorphism h : A’ — B’, where A’ and
B’ are subreducts of A and B respectively, such that

¢ his a g—isomorphism;

e if o maps sort s; in S to sort s in S5, then the carrier set corresponding to s, is in A’ and
the carrier set corresponding to sy is in B’;

o if ¢ maps the operation f; in Fj to the operation f; in F,, then the function corresponding
to fi is in A’ and the function corresponding to f; is in B'. [

In the rest of the discussion, we will only consider specifications that are total o—isomorphic
with respect to their name signature morphisms. For total o—isomorphic specifications SP, =<
Y1, Er > and SPy =< ¥, k7 >, the signature of their meet SPLASP, is ¥ N E,.

Using the definition of meet and the assumptions stated above, we can now uniquely define two
other composition operations, difference and join. The difference between two specifications,
5Py and SP,, is the same as the difference between the first specification and the meet of the
two specifications. Intuitively we can obtain the difference SP3 thus: From the meaning of the
first specification, remove the part that is isomorphic to the meaning of the meet of the two
given specifications, and then pick the smallest constructor subreduct of the meaning of the first
specification that contains the remaining meaning. In general, the meet of $P, and SP3 could
be non-empty because some sorts or operations of S P; that are not in P, may depend on some
other sorts or operations that are common to both SP; and SP,. To ensure that SP; has a
minimal meet with S/, its meaning must be the smallest algebra with all the above properties.
'To show that this notion of difference is uniquely defined, we will need the fact that the constructor
subreducts of this difference form a complete lattice.

Theorem 2 Lct M be the meaning of a specification S P, L be the lattice of constructor subreducts
of M and A be a constructor subreduct of M. The set of constructor subreducts of M whose union
with A 1s M itself forms a complete lattice under the subreduct ordering.

Proof: Similar to the proof of Theorem ?7. [|

We will use L(SP.A) o denote the lattice stated in Theorem ??. We can now define
difference uniquely as follows:

Definition 12 Diffcrence. Let SPy =< ¥y, Ey > and SP, =< ¥y, Ey > be specifications with
meanings My and Ay, respectively. Let SP) and §P; be total o —isomorphic with respect to the
name signature morphisin @ between their signatures. Let S Py =< Y4, F3 >, with meaning Mj.
be the meet of S and SP,. Then the difference between § Py and SP, (denoted SPE) SPy) is
a specification SP =< ¥, £ > with meaning A7 such that M is isomorphic to the bottom clement
of LS, M3) and there exists an inclusion signature morphism in : ¥ — ¥,]

The join of two specifications S p and S P, is a specification with all of S/ and SP,. but
with only one copv of the meet of SP; and SP,.

1-32

Definition 13 Join. Let SP, =< X,, E; > and SP; =< ¥4, E; > be total o-isomorphic specifi-
cations with meanings M; and Mj; respectively, and let o be the name signature morphism from
¥, to E;. Let §P3, with meaning M3, be the meet of SP; and SP,. Then the join of $P; and
S P, (denoted SP, vV SP,) is a specification SP with meaning M such that M = M’'v M” with v
denoting the union of algebras and where

e M’ is isomorphic to M;;
e M" is isomorphic to My; and
e M’ A M" is isomorphic to Mj.

Furthermore, there exist inclusion signature morphisms iny : £; — ¥ and in; : ¥, — ¥, and the
signature of SPis ¥ = ¥; v Xo. []

Without the total o-isomorphism assumption, join is a partial operation because two sorts or
operations in SP; and SP; that are intended to be isomorphic (via o) may not be isomorphic.
Note that the result of the join operation is uniquely defined because of the unique result of the
meet operation.

We can now define the merge operation. Merge is a partial operation that takes three speci-
fications, S Py, SP,, and S P3, and merges them to produce a new specification SP;. SP; is the
base specification; SP; and S P3 are specifications that are obtained by modifying SP;. SPy, if
defined, contains the following sorts and operations:

¢ all the sorts and operations in .S P, left unchanged in SP, and S P3;
e all the sorts and operations in S P, that are either new or changed as compared to S Py;

e all the sorts and operations in §P3 that are either new or changed as compared to S P;.

Definition 14 Merge. The merge of of three specifications, SPy, SP,, and S Ps, if defined, is
SP=(SP,ASP3)V((SP0 SP)V (SPEO Sh))

If we did not have the assumption about total o-isomorphisms, merge would be a partial
operation. Without total o-isomorphisms, the various joins in the definition of merge may not be
defined. The uniqueness of merge is guaranteed by the uniqueness of A,V, and ©) .

Some properties of the three composition operations defined above are presented in the next
section.

4.3.3 Properties of the Composition Operations

To provide guidance in the use of the composition operations defined in the previous section, we
need to know how they interact. In this section, we study their various properties. We again
assume all specifications to be total o-isomorphic where o is the name-isomorphism.

1. (Commutativity) SPLASP, X SP,ASH
Since S P and § P, are total a-isomorphic, S P, and § Py are also total o-isomorphic. There-
fore, L{S Py, S Py, 0) is isomorphic to L(S Py, SPy,07") because cach element of the former
lattice, being a constructor subreduct of §P; and S P,. is also in the latter lattice, and vice
versa.

. (Commutativity) SP,VSP, 2 SP,v SP

This follows directly from the definition of union of algebras and commutativity of A.

. (Idempotency) SPASP = SP

The top element of L(SP,SP,o) is the meaning of SP itself because o is a total signature
morphism, and the meaning of S P is a constructor subreduct of itself.

. (Idempotency) SPVv SP >~ SP

This follows from the fact that the union operation on algebras is idempotent.

. (Associativity) (SPLASP) A SP; =2 SPy A (SP, ASPs)

Let S P, denote the L.h.s. and SP, denote the r.h.s. of this equation. Let z be an element
(i.e., carrier set or function) of the meaning of SP,. Therefore, it is isomorphic to some
element y of the meaning of SP, A SP, as well as to some clement z in the meaning of
S P3. Therefore, z is isomorphic to some element in the meaning of all three specifications.
Therefore it belongs to the meaning of SP,. Therefore, the meaning of 5P is a subreduct
of the meaning of SP,. Similarly, it can be shown that the meaning of SP; is a subreduct
of the meaning of S P;. Therefore, S P, and S P, are isomorphic.

. (associativity) (SP,VSP)V SP3s = SP vV (SP,V SP;)

Let S P; denote the 1.h.s. and S P, denote the r.h.s. of this equation. Let x be an element
(i.e., carrier set or function) of the meaning of SP;. Therefore it belongs to the meaning
of either SP; or SP; vV SP,. Suppose it belongs to SP;. Therefore, it also belongs to the
meaning of SP; V SP; and hence to the meaning of SP,. Similarly, we can show that
clements belonging to the meanings of SP, or SP, also belong to the meaning of SP,.
Therefore, meaning of 5P is a subreduct of the meaning of S P,. Similarly, it can be shown
that the meaning of S P, is a subreduct of the meaning of 5. Therefore, SFP; and S P, are
isomorphic.

. (Distributivity) SPLA(SPyV SP) 2 (SPLASP)V (SPLASPs)

Let S P, denote the Lh.s. and SP,. denote the r.h.s. of this equation. Let @ be an element
(i.e., carrier set or function) of the meaning of SP;. Therefore it belongs to the meaning
of SP; as well as SP, v §P;. Therefore, it also belongs to the meaning of either SP, or
S P3;. Suppose it belongs to the meaning of S P,. Therefore, it belongs to the meaning of
SPy ASP,, and hence to the meaning of S P,. Similarly, we can show that x belongs to the
meaning of S P, if it belongs to the meaning of SP3.Therefore, SP; is a subreduct of the
meaning of S, On the other hand, if & belongs to the meaning of S P, then it belongs to
to the meaning of cither SPLAS Py or SPy A S Py, I it belongs to the meaning of S Py AS P,
then it also belongs to the meanings of both §P; as well as 5/, and hence to the meaning of
S P Similarly, if it belongs to S Py A S P3, then it belongs to the meaning of S F. Therefore,
the meaning of SP; is a subreduct of the meaning of SF;. Therefore, SFP and SP, are
isomorphic,

(Distributivity) SPyV(SPa ASP) Z(SPVSP)AN(SPV Sy

Let SP; denote the LLh.s. and S denote the r.h.s. of this equation. Let & be an element
(i.e., carrier set or function) of the meaning of 5P Therefore it belongs to the meaning of
SPyor SPy ASPs. If it belongs to the meaning of 577, it also belongs to the meanings of
SPLv SP, and SPy v SP;. On the other hand, if 2 belongs to the meaning of both S/

4-34

and SP3, then again it belongs to the meaning of SP,. Therefore, meaning of SP is a
subreduct of the meaning of SP,. On the other hand, if z belongs to S P, then it belongs
to to the meanings of both SP, vV SP; and SP; v SP;. If it belongs to the meaning of SPy,
then it also belongs to the meaning of SP. On the other hand, if it does not belong to the
meaning of S P;, then it must belong to the meanings of both S P, and 5 P;, and hence to
the meaning of SP,. Therefore, the meaning of 5P, is a subreduct of the meaning of SP,.
Therefore, S P, and S P, are isomorphic.

9. SPO SPx~ 1
Since SP A SPis SP itself, the smallest subreduct of SP such that its join with SPASP
is S P itself is the bottom element.

4.3.4 Related Work

Horowitz, Prins, and Reps [?] discuss one operation for composing programs. This operation
helps integrate three programs: a base program and two variants of the base program. The result
of integration contains the information in the base program together with the information in the
variants that has changed from the base. During integration of changed information from the
variants it is ensured that they do not conflict. We adapt this operation to get merge that works
on software specifications, and add three more compose operations, meet, join, and difference.
Meet combines the information in two components into one after ensuring that the information
does not conflict (thus meet is a special case of merge wherein the base component is empty).
Join extracts the information common to two specification components, and difference selects
information present in the first component but not in the second.

In the survey on algebraic semantics for specifications, Wirsing [?] discusses work on speci-
fication building operations. While the operations discussed there are designed at the semantic
level, the only operation that resembles any of our composition operations is the union operation.
This operation assumes that the symbols used in the two input components to be identical and
produces a component containing information (i.c., axioms) present in either of the input com-
ponents. Our goal in designing the join operation was for it to be more useful in practice; when
performing the join of two components, it would help the specification developer to know if there
is any conflict between the two.,

Feather and Johnson [?, 2, 7] discuss evolution transformations (ETs): transformations that
produce stereotypical changes in the specifications they are applied to. Most of the ETs are adap-
tation operations, helping in modifving the information contained in a component. Feather {?. ?]
discusses how two components can be merged by using the sequences of evolution transformations
that produced these components. While we agree that this is a good approach to use ultimately.
we currently do not have adaptation operations that have been designed at the semantic level
to produce specific changes in the properties of components. Furthermore. in practice, there are
always manual changes performed together with the application of E'T's to produce a desired soft-
ware component. So there is a need for composition operations that do not rely solely on ET
histories.

4.3.5 Conclusion

In this paper, we have presented four operations - meet, join, difference. and merge - for com-
A A
posing formal software specifications. These operations work at the semantic level and guaranwee

4-35

certain properties of the result produced. The operations help in building new validated, reusable
specification components, and also help in detecting any conflicts that may exist among the com-
ponents being composed.

We know from our experience in implementing these operations that the ideas here can be
extended to compose reusable components of software code written in functional languages. We
need to investigate changes needed to make the operations useful for composing other forms of
reusable components such as software designs or reusable components of code written in imperative
or object-oriented languages. We also need to analyze the operations we have for completeness
and design new operations if necessary.

We also need to design formal operations for adapting properties of individual specifications
components. Then the interactions between various adapt and compose operations can be ana-
lyzed to determine properties that can be used to guide in specification reuse and development.

4.4 Implementation of Composition Operations
4.4.1 Design of Implementation Operations

In this section, we will briefly look at the design criteria, the design process, and the actual
definitions of the following composition operations:

o Meet. The meet of two specification components is a component that has information
common to both the components.

e Difference. The difference of two specification components (given in a specific order) is a
component that contains information in the first specification component that is not in the
second specification component.

e Merge. The merge operation is applied to three components: a base component, and two
components that have been produced by modifying the base component. The result of merge
is a component that has information common to all three components, along with the new
or changed information in the two evolved components.

e Join. The join of two components is a component that has all the information from both
the components. This is a special case of merge, equivalent to merge with an empty base
component.

4.4.1.1 Design Criteria As argued in the introduction, we want operations whose behaviors
are known: that is, operations whose application results in a definite change, and that guarantee
certain properties of the results they produce given inputs with certain propertier.

We, therefore, have the following design criteria:

o The composition operations should be analyzable for determining the semantic changes they
produce; hence they should be formal.

e They should produce definite, predictable changes to assist in the validation of their results.

e With input components that have certain properties (c.g., consistency), the operations
should guarantee certain properties of the result (including preservation of important prop-
erties such as consistency).

4-36

Figure 8: Two maximal meets of A and B exist: one whose meaning consists of the sets s; and
s with the operation f;, and another whose meaning has the two sets with the operation fs.

4.4.1.2 Design In this section, we discuss the design of the operations meet, difference, merge,
and join, and analyze their behavior using algebraic semantics®. We assume all specifications to be
equational. For conceptual clarity, we have attempted to present the ideas informally by reducing
mathematical notation. The interested reader can find detailed proofs in [?].

4.4.1.2.1 Meet The meet of two specification components, SP, and SP,, denoted by
SPy A SP,,is a component S Pz such that the meaning of SP; is an algebra that is a subreduct?
of the meaning of SP; as well as that of §P,. Moreover, we want the meaning of $P; to be the
largest such algebra®. The meaning of S P3 must be a subreduct of the meanings of SP; and SP,
so that S P; does not contain any information that is not in both SP; and SP,. Its meaning must
be the largest such algebra so that S P3 contains everything common to SP; and SP,.

Unfortunately, meet, defined as above, is not unique. Given specification components P,
and S P,, there can be several different specification components S P; that fit the definition. If we
take the common subreducts of the meanings of S P, and SP; with the subreduct relation as the
partial ordering among these algebras, we do not necessarily get a lattice. Thus, there may be
several mutually incomparable maximal subreducts in this collection. For example, in Figure 77,
if A and B are the meanings of the specification components SP; and S Py, respectively, then two
maximal intersections exist. The meaning of one possible maximal intersection of SP; and $P; is

3That is, each specification has an algebra as its semantics. An algebra is a collection of sets together with
functions on these sets. For instance, the set of natural numbers, the set of stacks of natural nuinbers, and
functions create, push, pop, and top might be the algebraic scmantics of a stack specification.

* A subreduct M of an algebra N is an algebra consisting of a subset of the setsin N and a subset of the functions
in N. Of course, for each function in M, its domain and range sets should also be included in M.

®*We use the subreduct relation for ordering algebras.

4-37

an algebra consisting of sets s; and s with the function f;. The map h shown in the figure maps
the elements of the sets to make f| compatible in the two algebras. But the same map makes f;
incompatible.

If we change the map h to another map h/ (not shown in the figure) that maps element a
in /A tobin Band bin Ato a in B, then we get another maximal intersection consisting of
sets s1 and s,, and function f,. Clearly, this map makes the function f; from the two algebras
incompatible.

Thus, the definition of meet violates our design criterion that the composition operations
should produce definite changes. We, therefore, must further constrain the definition of meet.

In Figure 77, if we allow only the map h between the algebras (and exclude h/ or any other
map), then we will have only one maximal algebra consisting of the two sets and the function f;.
This is precisely the restriction we impose.

Each of our specifications has a set of specially designated operations called constructors. We
assume that the specifications are such that every ground term (i.e., a term without any variables)
can be rewritten using the axioms of the specification to a term containing only constructor
symbols. In other words, the specification is sufficiently complete [?, 7). We now redefine the
meet of two specifications to be a specification whose meaning is the largest constructor subreduct®
of the meanings of the two given specifications. We also provide a partial map, o, between the
signatures (sorts and operations) of S P, and S P, to specify parts of the two specification that are
intended to be the same (from a requirements perspective). This map rules out frivolous matches,
and it can be proved that the common constructor subreducts of 5P, and S P, now form a lattice
with a unique maximum subreduct (up to isomorphism). The map. h, between the meanings of
the specifications is derived from o. In Figure 77, if we assume that f; is a constructor, then we
get a unique meet: an algebra consisting of the sets Sy and 9,. and the function f;. In the rest
of this section, we assume that the partial maps, o, providing a correspondence between various
specifications under consideration are given by the user’.

The operation meet as defined above has the properties we desire. If the specifications S and
5P, are internally consistent and sufficiently complete, then S P5; has these properties, too. SP;
is consistent because we take constructor subreducts, and S P; does not have anything that was
not already in .S Py and §/1%. S P5is sufficiently complete because we take constructor subreducts.

4.4.1.2.2 Join Given two specifications S Py and S P,, the join of 5P and S P,, denoted
by SPy Vv §P, is a specification component SP3 such that the meanings of SP, and SP, are
constructor subreducts of the meaning of S P3. Moreover, the meaning of S Ps is the smallest such
algebra. The meanings of S/ and SP, must be subreducts of the meaning of SP3 so that SPy
contains everything in S P, and SP,. It must be the the smallest such algebra so that it does not
contain any information that is not in cither §/ or SP;.

Join is a partial operation. Given two specification components and a map between their
signatures, we inay not be able to produce a join if there is a conflict. A conflict is said to occur
when two sorts or operations that are intended to be semantically equivalent (according to the

€ An algebra a is a constructor subreduct of the algebra 3 if a is a subreduct of 3, and if for every carrier set in
a, all the functions in /7 corresponding to the constructors of the sort corresponding to that carrier set are also in
a.

TActually, in onr implementation, we construct a default map between specification components to map sorts
and operations in one specification component to sorts and operations with the same name in the other specification
component. The user can always override the default.

4-38

specified map) are not equivalent. If there is no such conflict, then the join operation should
combine one copy of the common parts of the two specifications with the unique parts in the two
specifications. Thus, we can construct the algebra corresponding to the result of join by taking
the carrier sets and functions that are common to the meanings of the given specifications along
with the sets and functions that are unique to the meanings of each of the two given specifications.

Join, as defined above, results in a unique specification because, as in meet, we only take
constructor subreducts. Join preserves consistency since the result of join is defined only when
there is no conflict between the two specifications. Join also preserves sufficient completeness as
in the result of join (if it is defined), all the constructors of each sort exist in either both the given
specifications, or in exactly one given specification.

4.4.1.2.3 Difference Given two specification components SP; and SP;, the difference
between them, denoted by SP; & SP,, is a specification component SP; whose meaning is an
algebra that is the smallest constructor subreduct of the meaning of S P, such that its join with
SPyASP; is SP itself. The meaning of S P; must be a subreduct of §P; so that $P3 does not
contain any information that is not in §P;. The join of SP; and SP; A SP, must be SP; so that
S P contains all the information in S Py that is not also in S P;. In general, the meet of SP; and
S P3 could be non-empty because some sorts or operations of .S P; that are not in S P, may depend
on some other sorts or operations that are common to both SP; and SP,. To ensure that SP;
has a minimal intersection with S P,, its meaning must be the smallest algebra with all the above
properties.

The uniqueness of the definition of difference is guaranteed by the uniqueness of meet and join.
We first find the unique meet of §P; and SP,, and then find the smallest constructor subreduct
of the meaning of S P; such that its join with SP; A SP,is SP;. It can be proved that a smallest
such algebra always exists.

Difference preserves sufficient completeness as the meaning of the result of diflerence is a
constructor subreduct of the meaning of SP;. Difference also preserves consistency as we only
remove some parts from the equational specification .S Py, which is known to be consistent.

4.4.1.2.4 Merge Merge is a partial operation that takes three specifications, S, SP,,
and S P;, and merges them to produce a new specification SPy. SP; is the base specification;
S Py and §P5 are specifications that are obtained by modifying SP;. 5Py, if defined, contains the
following sorts and operations:

e all the sorts and operations in S Py left unchanged in SP, and $Ps;
o all the sorts and operations in S P, that are either new or changed as compared to SP;;

o all the sorts and operations in § P3 that are either new or changed as compared to S P;.

The result of merge is not defined if the three specifications interfere with one another. S Py,
S Py, and S Py can interfere with one another in the following ways:

t. If some sort or operation in S P, is changed differently in both SP; and S Ps.
2. If there are some semantically inequivalent sorts or operations in S P, and S P; that do not
correspond to anything in S/’ (by the partial maps provided between SP; and $FP,, and

S Py and S P4). but that should correspond according to another map provided between 5P,
and SP;.

4-39

function ComputeDellaty (azimuth, : angle,, dist; : angley) : angle;
acos(cos(disty) / cos(ComputeDellon,(dist,, azimuth)))

function ComputeDellat, (i:zimuths : angley, dista : angle;) : angles
acos(cos(disty) / cos(ComputeDellony(disty, azimutha)))

function CompuieDellony (dist : angley, azimuth : angley) : angley =
asin(sin(dist) * sin(azimuth))

function ComputeDellon; (dist : angle;, azimuth : angle;) : angle, =
asin(sin(dist) * sin(azimuth))

Figure 9: ComputeDellal; and ComputeDellat, are equivalent if angle; and angle; are equivalent

3. If there are new sorts or operations in S P3 whose meaning depends on the meaning of a
sort or operation (p) that has remained unchanged from > P;, but the meaning of the sort
or operation corresponding to p has changed in SP, (p/). Because p should be carried over
to the result of merge (as it has changed from SP;) and p should not. the new sorts or
operations in S P3 depending on p cannot be carried over. A symmetric case occurs if the
new sorts or operations are in S5 P;.

The result of the merge operation is unique, and it preserves consistency and sufficient com-
pleteness.

4.4.2 Implementation

In this section, we describe our implementation of the composition operations. We have imple-
mented the operations in a functional specification language called Refine [?]. The operations act
on executable specification components that are also written in a subset of Refine. In this imple-
mentation, sorts are classes. constructors are functions, and non-constructors are either functions
or maps between classes.

To implement the composition operations, we first made a few simplifying assumptions. All the
operations described in the previous section depend on a notion of semantic equivalence between
algebras. But proving that two specifications have the same meaning is theoretically unsolvable.
So we use the syntactic equivalence in our implementation. We consider two sorts in any two given
specifications to be equivalent if their corresponding constructors (implemented as functions) are
equivalent. Any two functions, fi and f,, are equivalent if they have the same arguments and
results, their bodies are syntactically equivalent, and any other sorts aun.! functions that f; and f;
depend on are also equivalent. For example, the functions ComputeDellat; and Comwute Dellat,
in Figure 7?7 are equivalent if the sorts angle; and angle, are equivalent.

Our cu.tent notion of equivalence is conservative, but it is sound; if our algorithms determine
two specifications tc be equivalent using our notion of equivalence, then the specifications can be
proved to be semantically equivalent. On the other hand, there will be cases where specifications
that are semantically equivalent will not be identified as equivalent by our algorithms.

Since equivalence of sorts depends on the equivalence of their constructors, and the equivalence
of operations depends on the equivalence of the sorts and other operations that they depend on,
constructing and matching dependency graphs is at the core of each of our composition operations.
In the next few sections, we will first describe the algorithms for constructing and matching
dependency graphs, and then describe how they are used in implementing each composition
operation.

4-10

ComputeDellat
O —— Operation node

O —— Sortnode

ComputcDellon

@)

angle

Figure 10: The function ComputeDellat, depends on the sort angle; and the function
ComputeDellon,.

4.4.2.1 Construction of Dependency Graphs A sort s in a specification is represented
by a carrier set in the meaning of the specification. s depends on each of its constructors because
changing the definition of any of its constructors may result in changing the elements of the
carrier set corresponding to s in the meaning of the specification. An operation, on the other
hand, is represented by a function in the algebra, and hence is dependent upon each sort in its
rank (i.e., its input sorts and its output sort). In addition, changing the definition of an operation
foo in the specification may result in changing the semantics of all other operations bar that
depcud on foo. Fach operation, therefore, also depends on other operations used in its definition.
The dependency graph for the function ComputeDellaty - defined in Figure ?? - is shown in
Picure 77,

The algorithm for constructing the dependency graph is as follows®. For each sort and each
opcration in the specification, we add a node to the dependency graph. We add edges from the
nodes corresponding to the constructors of each sort to the node corresponding to the sort that
they construct. We then add edges from the nodes corresponding to the input and output sorts
of each operation to the operation node. Finally, if an operation foo uses another operation bar
in its definition, we add an edge from the node for bar to the node for foo.

4.4.2.2 Matching Dependency Graphs To determine the parts of the specifications that
are equivalent, we match the dependency graphs. Matching helps us distinguish parts of two
specifications that are equivalent from the parts of the specifications that may not be equivalent.
We use a noue coloring ..cheme to make this distinction. We also use node colors to distinguish
nodes that are already processed from nodes yet to be processed. To match two dependency
graphs, all nodes of both the graphs are first colored blue (blue indicates nodes that have not
yet been processcd). From the user-supplied map between the sorts and operations of the twe
specifications, we obtain a set of pairs of nodes that should be compared against cach other®. We
then examine ecach pair of blue nodes in this set to see if the corresponding sorts ¢ operations are
identical. For pair: of sort nodes, we check if their constructors can be paired up one-to-one for
matching. If they do, then we color the two sort nodes amber. and add the pairs of constructor

Actnally, our specifications allow hidden sorts and hidden operations using an unport/export mechanism. This
adds further complexity to the algorithms, which we have omitted for conceptual clarity.

*Without this sct, matching reduces to a subgraph isomorphism problem, which is NP-complete. Moreover. the
match found using subgraph isomoiphism may not be the match the user intended.

111

nodes to the set of node pairs to be processed, if they are not already there. A pair of amber nodes
represent conditionally equivalent sorts or operations: they are equivalent if all the other sorts
and operations that these nodes depend on are also equivalent. If the two nodes do not match,
then we color them red, and follow their dependency edges in the graphs to color all the nodes
that depend on these nodes red. as well. The color red represents possible mismatch. All the
dependent nodes of any red nodes (i.e., nodes that car be reached from the red nodes by following
the edges of the graph) are also colored red, since a mismatch among a node pair’s dependents
can result in a mismatch between the depending nodes, too.

For node pairs corresponding to the operations of the specifications, we check if they have
similar ranks, and if their bodies are identical (except for use of other operation symbols in the
body). If they are similar. we color both the operation nodes amber, and add any new pairs of
sort or operation nodes from either the ranks or the body of the original operatious to the set of
node pairs to be processed. If we find a mismatch, we color those nodes red along with all the
other nodes that can be reached from these operation nodes.

Finally, when there are no more unexamined (i.e., blue) node pairs in the set of node pairs to
be processed. the matching process terminates. At termination, there may still be some amber
nodes in the two graphs in addition to the unmatched blue, matched green. and mismatched red
nodes. The presence of amber nodes at this stage indicates cyclic dependencies among these nodes.
Since the amber nodes are conditionally equivalent, and they do not depend on any mismatched
nodes. we finally color them green. At this point, the green nodes of the two graphs represent
sorts or operations of the specifications that are semantically equivalent, the red rodes indicate
sorts or operations that may not be semantically equivalent. and the blue nodes of each graph
represent sorts and operations that do not have a counterpart in the other specification.

We can illustrate the graph matching process with the following example. Suppose that the
function Compute Dellaty in Figure 77 is defined as follows:

function Compulc DcllatotCazimuths - anglea, dista : angles) : angles =

asin(sin(dists) / cos(Compule Dcllona(dista, azimuthy)))

If we try to match this new Compute Dellatyr function with the original Compute Dellaty
function from, Figure 7?7 and match ComputeDellony with Compute Dcllon,, the functions
C'ompute Dcllony and Compute Dellony would match (assuming that the sorts angle; and angle,
whose definitions have not been shown in the figure match). but the functions Compute Dellat,
and Compute Dellaty would not match. The resulting colored graphs are shown in Figure 72, If
the specification containing C'ompute Dellatyr had another function foo that did not correspond
to any function in the specification containing Compute Dellatyr then the node for foo would be
colored blue.

4.4.2.3 The Composition Operations The composition operations use dependency graph
construction and mateh algorithms to detect similarities and differences between specifications.,
and to detect potential conflicts in the case of join and merge. They then create new depen-
deney graphs corresponding to the specification of the result of these operations. The resulting
specification can be reconstructed casily from this dependency graph. We will not discuss the
reconstrucetion process in this paper.

4.4.2.3.1 Meet Given twospecifications, we construct their dependency graphs and match
them, We then identify the fargest subgraph containing only the green colored nodes and the

1-12

ComputeDellat ComputcDellat »

ComputeDellon ComputeDellon 2

angle angle 2

—— Matched node
C) —— Mismatched node

Figure 11: The dependency graphs of ComputeDellat, and Compute Dellat,! are matched. angle;
is known to match with angle,. Therefore, Compute Dellon; matches with Compute Dellon,.

edges between them from one of the dependency graphs (either one will work, as the subgraphs
corresponding to the green nodes and the edges between them in the two graphs are isomorphic).
This subgraph represents the semantic meet of the two input specifications.

4.4.2.3.2 Difference To determine the difference between two given specifications, we
create and match the dependency graphs for the specifications. After matching, the green nodes
in the two dependency graphs indicate the common elements between the two specifications.
Therefore, to get the difference between the two specifications, we identify the largest subgraph
of the first graph containing nodes that are either red (denoting sorts and operations in one
specification that do not match with corresponding sorts and operations in the other specification)
or blue (denoting sorts and operations in one specification that do not correspond to anything
in the other specification), along with the edges between them. We then take the dependency
closure of the nodes in this new subgraph. The nodes in the dependency closure represent sorts
and operations on which the sorts and operations in the red and black nodes depend. Dependency
closure is necessary, because the resulting specification would be incomplete without it.

4.4.2.3.3 Join The join of two specifications is a specification with information contained
in either of the two given specifications. To get the the join of the specifications, we first ensure
that there is no conflict between the two specifications. A conflict may exist if any corresponding
sorts or operations in the two specifications cannot be proven to be equivalent. To determine
existence of conflict. we first create and match the dependency graphs of the two specifications.
The matching process colors corresponding nodes of the graphs red if their corresponding sorts
or operations cannot he proved to be semantically equivalent. Therefore. presence of red nodes
in the matched graphs indicates possibility of conflict.

If there are no red nodes in the two graphs after matching, ihe new dependency graph corre-
sponding to the join is created by merging the two dependency graph. The graph merging process
merges corresponding nodes if they are both green. Edges between nodes that are merged are

4-143

also merged. The resulting graph contains exactly one copy of the green nodes in the two original
graphs and the edges between them, along with the unmatched nodes and edges from both the
original graphs.

4.4.2.3.4 Merge The merge operation composes the base specification 5P, with its two
derivations S P, and S P; (obtained by modifying S P;) to produce a new specification SPy. SP,
contains the parts of SP; that have not changed in both SP; and S P, and the new or changed
parts of S P, together with the new or changed parts of S P;. Before we merge the specifications,
however, we must ensure that there is no conflict among the specifications.

To detect conflicts, we first create two copies of the dependency graph of each specification.
We then match the dependency graphs of SP; against the dependency graphs of SP, and SPs,
and the dependency graph of SP; against the dependency graph of SP;. We then examine the
matched graphs to identify the three possible cases of conflict enumerated in Section ?7 as follows:

1. If a node corresponding to some sort or operation is red in each of the matched graphs,
then the sort or operation may have changed differently in SP; and S P3. Since the result
of merge must contain all the changes, but can contain only one changed copy of a sort or
operation, we conclude that there may be conflict.

2. If a node corresponding to a sort or operation in SP, that has no corresponding sort or
operation in SP; is red when matched against a corresponding sort or operation in SPj,
then the sort or operation in 5/ and 5P may be new, but semantically not equivalent.
Since the result of merge must contain all the new elements in SP; and S P3, but can only
contain one copy of corresponding new parts, we conclude that there may be a conflict.

&. If there is a red node in the dependency graph of 5P, when matched against the dependency
graph of SP; such that the node does not have any corresponding node in S P, then the
sort or operation corresponding to the red node is a new sort or operation in S P, that may
depend on sorts or operations unchanged in S P, that may have changed in S P;. Since the
result of the merge must contain the new parts of S P, along with the changed parts of 5 P;,
we conclude that there may be a conflict. Similarly, the presence of unmatched red nodes
in the graph of 5P indicates the possibility of conflict.

After we ensure that there is no possibility of conflict, the graphs of SP;, §P,, and SP; can
be merged. The process of merging consists of the following steps:

1. Take the graph of the meet of SP, and §P;. This will represent the specification that
contains the parts in P, and SP; that have not changed from SP;, and the new parts
in SP, and SP; that correspond (i.e., they are intended to be the same by the user) and
match.

2. Collect all the non-green nodes of the dependency graph of §1% from its match with the
graph of 5P,. The green nodes of this matched graph are already present in the result of
step 1.

3. From the result of step 2. remove all the green nodes of the dependency graph of SPs -
except those described below from its match with the dependency graph of SP;. These
removed nodes are either in the graph of the meet of $P and SP3, or they correspond to

4-41

sorts or operations that changed in S P; (by definition of merge, we would like to pick those
changed elements from 5 P, later). We do not remove a green node that does not correspond
to any node in the graph of S P, because that green node corresponds to an element that
has been deleted in SP, but left unchanged in SP;. By the definition of merge, we prefer
to keep the unchanged part rather than delete it.

4. Add the nodes from the result of step 3 to the graph produced in step 1. These nodes
represent either new elements in S Pj, or elements that have changed from SP; to SPs, or
elements that have not changed from SP; to SP; but have been deleted in S P;.

5. Steps 2 to 4 are repeated for S P, instead of S P;.

6. Every link in the dependency graph of SP; that is not in the result of step 5, and whose
source and target nodes (or nodes corresponding to them in the graph of SP;) are in the
result of step 5, is added to to the graph from step 5.

7. Similarly, every link in the dependency graph of S P, that is not in the result of step 6, and
whose source and target nodes (or nodes corresponding to them in the graph of .5 Ps) are in
the result of step 6, is added to the graph from step 6, unless its corresponding link from
the graph for S P; has already been added in step 6.

4.4.3 Related Work

In this section, we discuss research related to our work described in this paper, and argue how
this work attempts to complement and enhance the related work.
We discuss related work in three different areas as our work falls at their intersection:

1. composition operations for software development,
2. specification building operations, and

3. theories of reuse.

4.4.3.1 Composition Operations for Software Development Horwitz, Prins, and Reps
[?] discuss an approach for merging non-interfering versions of programs. They describe the
design of a tool based on language semantics to integrate different versions of a program. The
algorithm takes as input three programs: a2 program A called the base program and two programs
B and (' that are variants of the base program. Whenever the changes made to A to produce B
and €' do not interfere, the algorithm produces a new program I that integrates changes in B and
(" with A. They have implemented this algorithm using a representation similar to dependency
graphs to facilitate detection of changes and analysis of interference among changes.
Our work attempts to extend this work along two dimensions:

e With the advent of transformational techniques to transform a correct. validated speci-
fication into an cfficient program (sce, for example, [?]), the process of developing and
formalizing software specifications has received considerable attention. Problems analogous
to program version integration arise during specification building as well. When multiple
developers build large specifications, the task of merging the resnlting versions is critical.
We have adapted the integration algorithm described by Horwitz et al. to work for the
simple specification language with algebraic semantics that we have described in this paper.

445

e We have extended the idea of composition to include - in addition to the specification inte-
gration or merge operation - join, meet, and difference. These operations help in combining
two specification modules, or in determining information common to two specification mod-
ules, or in extracting information in one specification module that is not also in the other.
Our motivating example in Section 7?7 illustrates the usefulness of these operations.

4.4.3.2 Specification building operations In the algebraic specifications area, specification
building operations have been designed and analyzed (see [?], for a survey). While most work
on specification building operations has been motivated by a need to find a class of operations
that are complete in some sense (for example, can a certain class of specification expressions be
constructed by a given set of specification building operations, {?]), we have focused on finding
operations that are necessary for certain applications such as designing reusable specifications or
merging different specification versions.

In [?], the only operation that is a composition operation in our sense is the union operation;
this operation is similar to our join operation. The union operation assumes that the two specifica-
tions whose union is being computed have the same signature!®. We do not make this assumption;
furthermore, we want to preserve properties such as consistency and suflicient-completeness of the
input specifications, an issue that is not a primary focus in their work. Hence we ensure that
there is no conflict between the specifications being composed before composing them.

Our composition operations can also be viewed as an extensjon of the concept of evolution
transformations [?, 7, ?]. Evolution transformations are useful in evolving specifications by intro-
ducing stereotypical changes into specifications. But evolution transformations are not designed
to assist in specification validation: they do not gnarantee any properties of the resulting specifi-
cations.

4.4.3.3 Theories of reuse Methodologies for software reuse have received substantial re-
search attention in recent years (see for example, [?}). We can view the process of reusing software
as consisting of the following high-level steps {?]:

¢ finding components,

e understanding components,
e modifving components, and
e composing components.

In this work we have focused on the last of these steps: composition of reusable components.

Reusable components can be composed to construct other reusable components. Because
components from a rense repository are used often, it is important that they are carefully designed.
and their correctness is ensured before they are deposited into the repository. Therefore, our
composition operations work at a semantic level guaranteeing several important properties of the
resulting composite. ‘This helps in validating the reusable component before storing it in the
repository.

Additionally. when users retrieve and compose large components. they are unaware of the
interactions hetween these components. Hence it is essential to have automated tools that can

1Gignature is simply the collection of sort and function symbols used in the specification.

4-146

compose such components and indicate any conflicts. This was also one of our main considerations
in the design of composition operations.

References

[Balzer78)

[Balzer83]

[Balzer85]

[Bhat92a]

[Bhat92b]

[Bidoit89)]

[Biggerstaff89a]

[Biggerstaff89b)]

[Boehm81]

[Davey90]

[DeBellis90]

[FadesR9)

[Feather89a)

[Feather89b]

[Fickas8Ra]

Robert Balzer, Neil Goldman, and David Wile. Informality in Program Specifi-
cations. IFEFE Transactions on Software Engineering, 4(2):94-103, March 1978.

Robert Balzer, Jr. Thomas E. Cheatham, and Cordell Green. Software Technol-
ogy in the 1990’s: Using a New Paradigm. IEEE Computer, 1983.

Robert Balzer. A 15 Year Perspective on Automatic Programming. IEFE Trans-
actions on Software Engineering, SE-11(11):1257-1268, November 1985.

Sudin Bhat and Kanth Miriyala. A Theory for Specification Validation and
Reuse. In Submitted for Publication, 1992.

Sudin Bhat and Kanth Miriyala. A Theorv of Composition Operations for Soft-
ware Reuse. In Working Paper, 1992.

M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic spec-
ifications more understandable: an experiment with the PLUSS specification
language. Science of Computer Programming, 12(1989):1-38, 1989.

Ted J. Biggerstaff and Alan J. Perlis. Software Reusability: Concepts and Models,
volume 1. ACM Press, New York, 1989.

Ted J. Biggerstaff and Charles Richter, Reusability Framework, Assessment, and
Directions, chapter 1, pages 1-17. ACM Press, Frontier Series, New York, 1989.

Barry W. Boehm. Software Engincering Economics. Prentice-Hall, New Jersey.,
1981.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 1990.

M. DeBellis. The C'oncept Demonstration Rapid Prototype System. In Proceed-
ings of the 5th Annual Knowledge-Based Software Assistant Conference, pages
211225, Syracuse, NY, 1990.

Peter Eades and Roberto Tamassia. Algorithms for Drawing Graphs: An An-
notated Bibliography. Technical Report CS-89-09. Department of Computer
Science, Brown University, Providence, October 1989.

Martin S. Feather. Constructing Specifications by Combining Parallel Elabo-
rations. [FEEE Transactions on Software Enginecring, 15(2):198 208, February
1989.

Martin S. Feather. Detecting Interference When Merging Specifications. In Fifth
International Workshop on Software Specification and Design, pages 169 176,
April 1989.

Stephen Fickas and P. Nagarajan. Being Suspicious: Critiquing Problem Speci-
fications. In Proccedings of the Seventh National Conference on Artificial Intel-
ligenee, pages 19 24, 1988,

[Fickas88b]

[Green86]

[Guttag78]

[Horwitz89]

[Inc.90]

[Jalote89]

[Johnson90]

[LaBatt90]

[Miriyala92]

[Musser80]

[Reubenstein91]

[Smith90]

[Srinivas90)

[Wing&R]

[Wirsing90]

Stephen Fickas and P. Nagarajan. Critiquing Software Specifications. IEEFE
Software, pages 37-47, November 1988.

Cordell Green, David Luckham, Robert Balzer, Thomas Cheatham, and Charles
Rich. Report on a Knowledge-Based Software Assistant. In Charles Rich and
Richard Waters, editors, Readings in Artificial Intelligence and Software Engi-
neering, pages 377-428. Morgan Kaufmann Publishers, Inc., 95 First Street, Los
Altos, CA 94022, 1986.

John V. Guttag and J. J. Horning. The Algebraic Specification of Abstract Data
Types. Acta Informatica, 10:27-52, 1978.

Susan Horwitz, Jan Prins, and Thomas Reps. Integrating Noninterfering Ver-
sions of Programs. ACM Transactions on Programming Languages and Systems,
11(3):345-387, July 1989.

Reasoning Systems Inc. REFINE User’s Guide. Palo Alto, CA, 1990.

Pankaj Jalote. Testing the Completeness of Specifications. IEEFE Transactions
on Software Engineering, 15(5):526-531, May 1989.

W. L. Johnson and M.S. Feather. Building an Evolution Transformation Li-
brary. In International Conference on Software Fngineering, pages 238-248,
Nice, France, 1990. IEEE Computer Society.

FEarl C. LaBatt, Jr. Analysis of Improved Many-on-Many. Technical Report
RADC-TR-90-115, Rome Air Development Center, April 1990.

Kanth Miriyala, Scot W. Hornick, and Roberto Tamassia. An Incremental Ap-
proach to Aesthetic Graph Layout. 1992.

David Musser. Abstract Data Type Specification in the AFFIRM System. IFEFE
Transactions on Software Engineering, SE-6(1):24-32, January 1980.

Howard B. Reubenstein and Richard C. Waters. The Requirements Apprentice:
Automated Assistance for Requirements Acquisition. [FEE Transactions on
Software Fngincering, January 1991.

D. R. Smith. KIDS - A Semi-Automatic Program Development System. [FEFE
Transactions on Software Fngincering, 16(9):1024 -1043, September 1990.

Yellamraju V. Srinivas. Algebraic Specification: Syntax, Semantics, Structure.
Technical Report TR 90-15, University of California, Irvine, June 1990.

Jeannette M. Wing. A Study of 12 Specifications of the Library Problem. IEEFE
Software, pages 66 76, July 1988.

M. Wirsing. Algebraic Specification. In J. van Leeuwen, editor, Handbook of
Theorctical Computer Science, chapter Formal Models and Semantics, pages 675
788, MIT Press/FElsevier, 1990.

1-19

Section 5:
A Software Development Process Model for
the KBSA Concept Demonstration System

This section describes, at several different levels of description, one likely KBSA-
based software development process. It does not attempt to present the definitive
KBSA software development process model, but ratner a convincingly detailed
example of one possible model. As other KBSA researchers have noted, there will
probably never be a single KBSA process model — one of KBSA's greatest
strengths is its potential ability to support alternative process models (Jullig,
1989). However, in order to understand and discuss the issues involved in
developing process models for KBSA, we believe it is essential to develop at least
one detailed example of a potential model.

Section 5.1 will present an overview of the process model, and section 5.2 will
discuss how the Concept Demo represents elements of the process model (e.g.,
tasks, transformations, and kb-module states) internally.

5.1. High-Level Vision of the Concept Demonstration System Process Model

This section describes a high-level vision of a process model for software
development based on a Knowledge Based Software Assistant (KBSA). Further, it
relates that process model to the functionality present in the final delivery
version of the KBSA Concept Demonstration System.

5.1.1. Overview of the High-Level Process Model

Distinctions Between the KBSA and Waterfall Models. The KBSA-oriented
software development process model discussed below presents its users with
three major advantages relative to the conventional Waterfall development
practices:

* Formal representation and manipulation of the target system specification
without committing to a specific implementation, enabling strong validation of
via simulation, prototyping, and other evaluation techniques and system-level
(rather than program-level) optimization for better performance;

» Tightly integrated, rapidly cyclical, incremental development, enhancing
continuity between successive development artifact states and enabling
improved traceability and replay of the development process; and

e Sophisticated and integrated process modeling capabilities, allowing control of
development without forcing a waterfall-like, lock-step progression on the set of
development artifacts.

Application Abstract System Functional
Domain System Instance System
Description Description Description Description

Pre-Formal - [_» -} (’
ey |,
4
S
Formal
(executable)
Optimized
Code

Figure 5-1: How Conventional Models Treat Development Information

As shown in Figure 5-1, conventional, waterfall development typically captures
three types of information defining the system to be built: an application domain
description (e.g., an entity-relation diagram), a system instance description (e.g.,
a Yourdan structure chart), and a functional system description (e.g., a functional
specification). This information is captured, organized, and integrated at an pre-
formal level, and the system instance description is then elaborated into
optimized code. In some cases, parts of the system instance description are
elaborated into formal specifications via prototyping or simulation models. These
are (sometimes) used to validate the pre-formal instance description, prior to its
implementation and optimization in code. Note that, in most cases, these
executable partial specifications (i.e., the prototypes and simulations) do not feed
forward into the actual code development process.

Figure 5-2 shows that KBSA handles this information in a significantly different
way. First, it makes far greater use of formal (i.e., executable) specifications. This
enables incremental development and increases the power of the validation
process. Second, KBSA makes explicit use of a new category of information, the
abstract system description. The abstract system description is an executable
specification, synthesizing the desired system behavior and the key application
domain models, prior to any major commitment to implementation techniques.
The KBSA-supported developer defers optimization issues until the abstract
system model has been elaborated and validated.

5-2

Application Abstract System Functional
Domain System Instance System
Description Description Description Description

~
Pre-Formal .

A
Formal

(executable)

Optimized
Code

Figure 5-2: How KBSA Treats Developmentinformation

Structure of the Section. Section 5.1.2 describes briefly the previous work from
which our model is derived, and presents our process model at an overview
level, depicting the complete spectrum of software development and evolution.
Section 5.1.3 then presents more detailed discussions of the model’s treatment of
requirements in their pre-formal state. Section 5.1.4 discusses how they are then
formalized as implementation-independent, declarative requirements. Within
the Concept Demonstration project, these processes received the bulk of our
effort and attention, and are thus more fully described than is specification
implementation in section 5.1.5. After a brief descriptions of the relationship
between this model and Boehm’s Spiral Model in section 5.1.6, section 5.1.7
presents a summary of section 5.1.

5.1.2. Presentation of the Process Model

Relationship to Previous Research. Our Process Model integrates research from
three different areas: (1) knowledge-based software engineering, (2) Artificial
Intelligence (AI) planning and its application to software development, and (3)
studies of the cognitive, social, and organizational processes employed in real-
world software development.

The transformational development paradigm (Balzer, 1985) provides the
foundation for our process model. The KBSA research program has been created
around an elaborated vision of that paradigm (Green et al, 1983), and many of
the atomic tasks represented in our model are transformations developed in
earlier KBSA program work (Johnson and Feather, 1990; Goldberg et al, 1989;
Smith, 1990). Similarly, the task formalism that we present here is an extension
of that developed in an earlier KBSA research effort, the Project Management

Assistant (Daum and Jullig, 1990).

decisions &
rationale

formal
development

informal Specification high-level Interactive Automatic source
specification |_ Acquisition specification Translation — Compilation | program
development
Specification
Validation
Maintenance

Figure 5-3: Balzer’s Extended Automatic Programming Paradigm

Intelligent software development environments, such as MARVEL (Kaiser et al,
1988) and Grapple (Huff, 1989), have defined software development task and
object formalisms that Al planning techniques can operate on. For example,
backward chaining can be used for plan generation. This will identify the
sequence of tasks that will move an object (e.g., a specification) from its current
state to a desired state. Our model applies this strategy, but at a finer granularity,
planning for the development of individual objects as well as for components
consisting of multiple objects.

Work done at MCC by Guindon et al (1987) and Curtis (1990) illustrates the
importance of enabling the developer to move between the highly conceptual
and implementation-specific levels of analysis. Their results suggest that the rich
process description information in process programming models (Osterweil,
1987) should be combined with a more flexible, adaptable planning approach
such as that discussed by Huff (1988). This gives the human developer control of
the development process through a mixed initiative interface, while providing
him with powerful development capabilities.

5-4

Perry (1988) discusses the importance of issues of scale and number of
developers, which many process modeling formalisms fail to address. Barghouti
and Kaiser (1990) have begun to address some of these issues in their Multi-User
MARVEL model. Mi and Scacchi (1990) identify several standard techniques
which can be used to coordinate the work of multiple developers when resource
conflicts occur. Their formalism has been used to analyze and simulate
methodologies for large development teams. While our work to date has focused
on guidance for the individual developer, our formalism for tasks and states is
almost identical to theirs. Therefore, we believe that we can provide similar
capabuities by integrating their process representation meta-model with ours.

Section 5.2 below will describe how our work combines Al planning with a
knowledge-based implementation of the transformation-based development
paradigm. As noted by Huff (1988), this provides the planning mechanism with
more uetailed, rigorous, and complete knowledge about the current state of the
specification. Similarly, the development operations are described in greater
detail, so planning can actually produce a list of specific, detailed development
steps — many of them executable — that will achieve the project objectives. To
ensure that the human directs the software development process, we provide a
mixed-initiative interface which gives the user both control and responsibility.

1 EnvionmentLavet .

H Organizational Process Change

Requirem'ts s
Acquisit'n & D y
Organizat'n et s
Organizational Process Level f t
.
— — o
Software/Functional Architecture Level . | y m
: N o
p
T e
Spaecification n - r
Development : o :
- T :, Software
Specification i n Reverse
Implementation Engineering

S

Hardware/Technicail /Architecture Level

Figure 5-4: High-Level Process Model

Overview of a KBSA-Oriented Process Model. This model is a direct descendent
of Balzer’s. It extends his work by explicitly considering (1) the acquisition and
organization of informally expressed requirenients, (2) the communication and
contention issues of programming in the large, (3) the reuse of specification
elements, and (4) the inclusion of reenginecrirg as a means of developing formal
specifications. The process model we present here is discussed primarily in terms
of the forward engineering process, but it has strong assumptions concerning the
importance of reverse engineering and the evolution of deployc.d systems.
Figure 5-4 represents a high-level view of the development process. The basic
concept illustrated in the Figure is that KBSA-based development progresses
through four major activities:

1. Acquisition: capture of requirements, in text and/or graphic form, followed
by their disambiguation and organi: ation into a well-formed structure of
requirements in preparation for their formal expression;

2. Specification developmert: formalization of requirements and their
incremental development via evolution transformations (cf. Johnson and
Harris, 1990) to a detailed but still implementation-independent state;

3. Specification implementation: application of meaning-preserving
transformations to optimize these formal requirements into specifications
(implementation-specific statements suitable for compilaticn and operational
deployment); and

4. Deployment and installation of the production-quality system, followed by
its ongoing operation, and evolution.

The background shading of the Figure is intended to convey that different types
of knowledge are required for each of the activities in the process model.

Knowledge of the Environment: The environment refers to knowledge external
to the organization itself, such as Government regulations, relevant properties of
physical laws, and standards for financial accounting. The organization typically
has little control over these, but their implications for the functionality of the
application must be recognized early in the development process. For example, a
system that controls a petroleum refinery must include robust models of the
relevant chemical reactions, just as an asset management system must use
accepted depreciation calculation methods.

Knowledge of Organizational Processes: Organizational process knowledge
describes practices within the organization, such as the pricing of products, the
assignment of business responsibilities 1 personnel, or the identification of
objects on radar as hostile or friendly. In most cases, the application software to
be built (or re-engineered) is intended to support the performance of these
processes. For example, the U.S. Federal Aviation Administration’s current

5-6

practice is to divide air traffic control responsibilities between different groups of
controllers responsible for ground control, departure and approach, and flight
en-route. The requirements need to capture this information such that the
appropriate data can be displayed effectively to each of these controllers.

Knowledge of Software/Functional Architectures: This level includes the
knowledge that the application system is expected to contain, and describes the
behavior it is expected to exhibit. For example, an ATC system is expected to
contain representations of (or “know about”) aircraft, pilots, separation rules,
airports, and controllers. Its behavior will typically include the ability to display
a representation of an airspace sector and to maintain a common database of
flight information in order to support air traffic controllers. Knowledge at this
level also includes non-functional requirements and software development
techniques.

Knowledge of Hardware/Technical Architectures: At this level we describe the
target system'’s intended execution environment in terms of hardware and
system software. In some cases, the constraints imposed by the technical
environment will need to be considered in the formalization of specifications or
even earlier in the description of requirements. For example, if the application is
constrained to use IBM-3270 technology for its interface, most user interaction
will have to be handled through character-based input and output. Alternatively,
the knowledge that the application system is expected to operate in an
environment offering more powerful graphical user interface capabilities enables
the developer to design a completely different (graphical) interface.

The organizational process change activity shown reflects our recognition that
new application software will generally imply adjustments to the organization’s
operating procedures, training programs, hiring practices, and possibly other
areas as well. In addition, plans for conversion and installation should be
developed prior to the deployment step. We will not address this activity further
here, but recognize that it will require additional consideration before KBSA
technology can be successfully transferred to actual production usage.

Software reverse engineering abstracts design information from the code and
documentation of existing systems, and reimplements the design in a more
maintainable form . Reverse engineering allows organizations to move from a
conventional to a KBSA-based environment. Today’s organizations have
mission-critical software that is very difficult and expensive to maintain. For
these organizations to realize the full benefits of KBSA, they will need to reverse
engineer their legacy systems into KBSA, because:

1. Up to 80% of software development effort goes to maintain existing software
rather than implementing new software (Martin and McClure 1983).

2. Even completely new systems developed with KBSA will have to be
integrated with existing systems. This integration will be far more difficult if
these systems remain based in static, inflexible, non-KBSA technologies.

Unfortunately, although the importance of reverse engineering to KBSA been
articulated (Kozaczynski and Ning, 1989; Kotik and Markosian, 1989; Newcomb,
1989), much work remains to be done on reverse engineering into KBSA.

5.1.3. Acquisition and Organization of Pre-formal Requirements

Acquisition and organization of informally expressed requirements logically
precedes the development of formal requirements. This involves the
identification and organization of relevant information, application domain
descriptions expressed in natural language. We use the term pre-formal to
describe requirements in this state, where the requirement is expressed
informally, but the informal expression is a component of a formal object (a
hypertext requirement object) with formally expressed relationships to other
hypertext objects. Requirements can be differentiated into three types of
information: application domain descriptions, user expectations of system
behavior, and the designer’s preliminary concept of the evolving system
(Johnson and Harris, 1990, Johnson and Feather, 1990). Each requirement can be
linked with others to form kb-modules. We envision that the activities below
would typically be used to capture, organize, and refine requirements. This is
not a fixed sequence of activities to be applied mechanically to every
requirement, but rather a set of operations to be applied in various orders as the
nature of the case requires.

Q}:qulrements User Expecla“o/
-l Initial Capture J (User Review]

T~

Hypertext Requlremenis < —
To Specification
/ Development

Organization Conflict
and Linkage Resolution

Domain Expertise
Figure 5-5: Requirements Acquisition and Organization

5-8

¢ Initial capture of an atomic requirement element. For example, “The minimum
vertical aircraft separation should be 1,000 ft up to flight level 290.” We would
also capture information describing the source or owner of the requirement (in
this case, FAA document 7110.65, page 5-5-1).

* Objective (automated) clustering by ownership and commonly occurring
terms. For example, the sentence above might be automatically clustered with
other declarations concerning “minimum ... aircraft separation.”

* Subjective (user-assisted) clustering on the basis of related concepts. For
example, we might link aircraft separation rules with a domain model of the jet-
route network, since the capacity of the jet-routes can only be determined with
reference to the minimum separation standards in effect.

* Identification and resolution of incompleteness and incorrectness. In terms of
the above example, we might note that flight levels are units of altitude
measurement corresponding to 100 feet (i.e., flight level 290 is 29,000 feet).

* Resolution of conflicts/contradictions internal tc kb-modules. Suppose, for
example, that one requirement states that “All indicators of aircraft, airspace, and
radar will appear on the controller’s display at all times” while another states
that “To improve usability, no more than 50 distinct items will be displayed at
any given time.” These are potentially in conflict, should the airspace region
displayed contain more than 50 items. The application designer might resolve
this by requiring that the system allow the “graying out” of some of the less
important items when the display includes more than 50 items, or by providing
several types of display filtering options.

* Review and approval of individual kb-modules. For instance, after the
appropriate users have agreed that the pre-formal expression of the separation
requirement has been expressed accurately, the developer can begin to formalize
that requirement.

* Resolution of conflicts/contradictions between kb-modules. For example, the
separation kb-module and the human-computer interaction standards kb-
module might contain contradictory expectations regarding the interface design.
These will need to be addressed (at least to the extent of identifying tradeoffs
between different goals of the target system) before the modeling and evaluation
of the conflict in the specification development process can take place.

Iterative review of requirements will occur even at the pre-formal requirements
state, as users examine the relationships stated in the preliminary description of
the domain and system functionality. Once they agree that it represents their

intentions and domain knowledge accurately, it will be placed in a modification
controlled state. Automated analyses will be conducted to ensure that each kb-

59

module is well-formed. For instance, this could involve determination that each
question attached to a requirement has a response attached to it.

The KBSA Concept Demonstration System supports requirements acquisition
and organization via a hypertext capability (Johnson et al, 1990 and DeBellis,
1990) and the use of a presentation architecture (Harris and Czuchry, 1988).
Automated text input, display of the structure of the pre-formal hypertext
requirements plex, and requirements browsing capabilities are also available.

5.1.4. Development of Formally Expressed Requirements

We use the term formally expressed requirement (or formal requirement) to
denote the next state of development in the KBSE process model. Our use of
formal implies simply that the requirement is expressed in a machine-intelligible
language — that the formal requirement can be compiled. Our choice of the term
requireinent signifies the declarative nature of the system description. A formai
requirement that describes a process, for example, will identify its preconditions
and postconditions, but will not include a procedural description of an
algorithm. The algorithm description will be added in the specification
implementation stage.

To Req'ts
Acquisition/
Organization

Validation %nhgrﬂlon %—Pcow““o“ j
1
T

©
Specification
fmpimentat’'n

To Req’ts
Acquisitiorv
Organization

Figure 5-6: Formalization of Requirements

The iterative process of formally expressing the pre-formal requirements can
begin at any time. Generally, however, it will follow their acquisition,
organization, and review. As shown in Figure 5-6, the formal expression activity
allows two main approaches: reuse and construction. After one (or possibly both)
of these approaches has been selected, the formal requirement is elaborated and
extended. Periodically, it will be validated by the owners of its associated pre-
formal requirements. Typically, the formal expression will cycle through several
elaboration, validation, and revision processes, as inconsistencies,
incompleteness, and inaccuracies are uncovered and corrected. These iterations
will also include modifications to the pre-formal requirements to ensure that they

5-10

stay in sync with their formal expressions and to maintain traceability. Once the
requirements been formalized, they will be combined with other modules and
any inconsistencies will be rectified. Finally, any remaining incompleteness

(such as unintentional non-determinism, omniscience, and omnipotencel) will be
corrected in a completion task (Johnson, 1990).

A typical formal element will begin as an pre-formal requirement. Using the
incremental construction approach, the developer will use a combination of the
following operations to formalize and elaborate the pre-formal elements of a kb-
module:

* Basic Knowledge Base operations will create formal objects corresponding
the pre-formal requirement.

* Evolution transformations will elaborate these objects, replace their default
values with appropriate context-specific ones, and capture their more
complex relationships (e.g., define rules and relationships between objects).

To validate, revise, organize, and complete the formal requirements, the
developer will use an incremental process combining features of prototyping
with elements of the Spiral Model (see Boehm, 1988). This incremental process
will iterate through the following operations:

¢ Automated analysis will identify problems of completeness and consistency
within each formal requirements kb-module, and suggest evolution
transformations that can be used to correct these problems.

* Users and developers will validate the formal requirements via critiquing
paraphrases and the behavior of prototypes and/or simulations.

* Developers will apply evolution transformations to revise the formal
requirements until the behavior of the prototypes and simulations is
corsidered correct, and their associated pre-formal requirements are also
updated.

* Developers can then apply powerful kb-module transformations, such as
union, intersection, and difference operations (described in section 4 above),
to integrate the individual kb-modules, removing inconsistencies and

1Non-determinism occurs, for example, when a specification defines a set of distinct options
without indicating how selection among them is to be made (e.g., a constraint stating that there
exists some controller for each controlled aircraft, without stating how a controller is to be
assigned to an aircraft). An omniscient specification assumes that it has access to any data it
requires, ignoring the question “Where did that data come from?” An omnipotent specification is
one which assumes that a change made in its knowledge base (e.g., a change in the value of
aircraft-heading) will automatically cause the corresponding change in the environment (the
physical aircraft will actually change its heading).

5-11

duplication between them (while validating that their behavior continues
unchanged).

* Automated analysis, as well as review by users and developers, will identify
any remaining non-determinism, omnipotence, or omniscience, and
developers will apply evolution transformations to revise the kb-module.

At this point, the developers will have produced a formally expressed,
declarative statement of the functionality required of the target application
system. Additional types of informatio:, such as the target application’s intended
execution environment and its non-functional requirements (e.g., response time,
throughput, capacity, etc) will also need to be specified for viable large-scale
development. These non-functional requirements would also be initially
captured and organized as pre-formal hypertext, and later expressed as formal
requirements.

In the KBSA Concept Demonstration System, basic knowledge-base
manipulation commands are used to create the initial formal objects. These are
then extended and refined via evolution transformations similar to the high-level
editing commands developed in the Knowledge-Based Specification Assistant
(Johnson, 1987) and the ARIES project (Johnson and Feather, 1989). Powerful
evaluation techniques such as paraphrasing, prototyping, and simulation
complement the consistency and completeness analyses performed automatically
by the KBSA Concept Demonstration System. The Concept Demo uses a
presentation architecture (similar to that described in Harris and Czuchry, 1988)
to maintain consistency between different presentations.

5.1.5. Specification Implementation

The formal requirements passed forward to specification implementation will be
declarative constructs, such as demons, constraints, and class hierarchies with
inheritance and default values. The default method of compilation for some
constructs may be very inefficient and none will be optimal. Specification
implementation will transform these constructs into more efficient, lower level
constructs via facilities such as data structure selection, unfolding of constraints,
state saving (to handle historical reference), finite differencing, and loop fusion.
We will use the term formal specification to denote a system description model
in this state.

These techniques have been examined in the research performed at the Kestrel
Institute in the KIDS environment (i.e., Smith, 1990) as well as at other research
centers (cf. Balzer, 1985). The amount of effort required in this stage will depend
upon a number of factors:

5-12

e Complexity of the problem. For example, implementation of a specification
for a real time scheduling system will require all possible optimization
techniques.

» Capabilities of the run-time environment. For example, in some
environments it will not be possible to directly compile a specification with
global knowledge base or constraint constructs.

¢ Non-functional requirements. For instance, response time, reliability, and
other non-functional constraints to guide the specification implementation
process.

* Sophistication of the compiler. Some of the transformations which are now
user guided (such as those demonstrated in the KIDS environment) may
eventually be automated, as compiler technology continues to become more
powerful.

In contrast to the transformations used in specification development, those used
here will be meaning preserving — ideally, this will have been proven to be true
for them. They will improve run-time characteristics of the target system (e.g.,
performance). Most of the previous research on these transformations has
emphasized processing optimizations, which are very important, especially for
real-time systems. But other types of implementation transformations will also
require attention before KBSA will be usable in industrial environments. These
include data-oriented optimizations and system architecture selections. Systems
which deal with very large amounts of data require different types of
optimizations than do process intensive systems. These optimizations must
consider low-level details about the structure and access languages of the
system’s various data-bases. System architecture factors play an essential part in
the implementation decisions which real programmers make. KBSA needs to
represent and use such knowledge to integrate different architectural
environments efficiently and seamlessly.

Following Concept Demo’s goal of leveraging existing KBSA software, we have
integrated with the KBSA Development Assistant (Smith, 1991) to provide
specification implementation functionality. As noted above, this work has dealt
mainly with process optimizations.

5.1.6 A Spiral View of the Concept Demo Process Model

Another view of this process model relates it to the Spiral Model described by
Boehm (1988). This model identifies a set of discrete development cycles, each
consisting of a planning, execution, and evaluation phase. Evaluation of the each
cycle’s outcome guides the planning for the next cycle. Each cycle reduces project
risk by concentrating development effort on the most critical issues facing the
project. For example, suppose the application’s functional requirements are

5-13

familiar to the developers but a new type of interface technology is desired (e.g.,
digital video interactive). In this case, the spiral model would suggest that a
feasibility study of the new interface technology should precede a detailed
requirements analysis.

The following sequence of topics could represent a spiral model development
process in a KBSA-based environment:

e Capture basic requirements and system interfaces
¢ Elaborate pre-formal requirements
(functional, non-functional, and architecture in parallel)
* Formalize pre-formal requirements
(functional, non-functional, and architecture in parallel)
* Investigate reuse possibilities
¢ Elaborate formal requirements
(functional, non-functional, and architecture in parallel)
* Merge functional requirements and architecture into system model
* Model and evaluate performance and reliability (revise system model)
* Optimize functional specification using meaning-preserving
transformations
* Generate code from optimized specification
* Install application and convert existing data and procedures
* Operate and evolve application

5.1.7 Summary

This section has presented a high-level overview of one possible process model
for software development in a KBSA environment. The model’s major activities
are organized around the degree of formalization and elaboration of the software
development artifact. They need not proceed in lockstep, but rather provide the
developer with strongly integrated facilities enabling rapid cycles of software
development, validation, elaboration, and ongoing enhancement. The model
recognizes that support is needed for the acquisition and organization of pre-
formal requirements information as well as for the creation and extension of
formally expressed specifications, and extends an earlier model to do so. It
recognizes the importance of interfacing with existing systems and the recovery
of procedural knowledge embedded within them, and provides these capabilities
by inclusion of Software Reverse Engineering as a top-level activity.

5-14

5.2. Plan-Based Guidance for Knowledge-Based Software Engineering

This section describes a Process Model formalism based on Artificial Intelligence
(AI) planning techniques which has been developed for the Knowledge-Based
Software Assistant (KBSA) Concept Demonstration System. This formalism
integrates previous work using planning representations to model software
development (e.g., Kaiser et al, 1988, and Huff, 1989) and work on knowledge-
based software development, such as the KBSA Specification Assistant (Johnson
and Feather, 1990) and the Kestrel Interactive Development System (Smith,
1990). A central feature of these environments is their use of powerful
transformations to support the development process (Green et al, 1983). A
transformation is a formally expressed, machine executable operation that
changes the state of a program or formal specification. Transformations change
programs in controlled, systematic ways to introduce or enhance desired
features. For example, they can improve execution efficiency or elaborate
descriptions of the system'’s functionality or context.

5.2.1. Introduction

By integrating an Al planning formalism with a knowledge-based software
engineering environment, the Knowledge-Rased Software Assistant Concept
Demonstration System exemplifies significant advantages over conventional
development support. These include (1) stronger guidance in the selection of
development operations; (2) better development process traceability; (3) more
powerful development support; (4) finer-grained planning capability; and (5)
mixed-initiative development. This section will describe the planning formalisms
used to accomplish this integration, and present an example illustrating these
benefits.

By superimposing a plan-based formalism on a knowledge-based environment
we achieve the following benefits:

* Stronger guidance in transformation selection. Even experienced users of
knowledge-based development environments can have difficulty selecting the
appropriate transformation sequence to achieve a development goal. The
planning formalism helps developers select goals and construct
transformation sequences to achieve them.

* Better development process traceability. Because the planning formalism
provides access to the rationale for each transformation, we can record not
only the sequence of transformations applied, but also information relating
the transformation’s local goal to the higher-level software development
process goals.

By extending plan-based formalisms to model knowledge-based development
environments, we achieve a complementary set of advantages:

5-15

* Higher-level development operations. Knowledge-based development
increases development productivity because — using transformations on
software development objects (e.g., objects and relations in the application
domain) rather than operations on edit-level objects (e.g., characters, lines, or
regions in an Emacs text file) — it accomplishes far more work in each atomic
action of the developer.

¢ Finer-grained planning capability. Transformations with strong semantics
replace editing tasks with very weak semantics as the leaf nodes in the plan
structure. In conventional software development environments, most
development tasks employ low-intelligence tools such as text editors. For
example, adding a new entity to an E/R diagram (see the example presented
on pages 7-11 below) and propagating this change through other affected
design documents (e.g., data-flow diagrams) require several manual editing
steps for each diagram. Through the use of transformations, this activity can
be executed in a single atornic step.

e Mixed-initiative development. Rather than force developers to change their
work style to fit the planning system’s model, we follow Huff (1988) in
employing a mixed-initiative work style. As users execute tasks, the planner
can recognize plans “bottomi-up” and relate them to the process model. The
stronger semantics of the tzansformation-based formalism enhance the
planner’s ability to do this. When stronger guidance is desired (for example,
to support novice users) the Concept Demo can employ a top-down planning
approach, in which the user selects a high-level task and allows the system to
guide her to its completion, step by step.

This section is structured as follows. Section 5.2.2 will explain the knowledge
representation formalism used in the Concept Demo to provide the advantages
described above, and section 5.2.3 will then present a detailed example showing
how the formalism supports them. Section 5.2.4 then concludes with a discussion
relating the formalism to other work on process models and a brief summary of
possible directions for future work.

5.2.2. Representation of Process Knowledge

As described above, the Concept Demo model of software development is
derived from that of Balzer (1985) and modeled more generally on the KBSA
approach (Green et al, 1983, and Sasso and DeBellis, 1990). Software
development in the Concept Demo begins by capturing informally expressed
requirements. These are next formalized as declarative requirements (e.g.,
invariants, functions, demons, or methods expressed formally). Later,
implementations are derived for these declarative requirements using either
algorithm design techniques (Smith, 1990) or transformations (Johnson and
Feather, 1990). Optimization is then performed on the specification before code is

5-16

derived. This is done using data structure selection and algorithm optimization
transformations. For example, a data structure defined at the declarative level as
a set might be transformed into either an array or a list, depending on whether or
not its maximum size is L.1own. Loop fusion, which merges two iterations over a
set into a single iterati~. (cf. Goldberg et al, 1989) exemplifies an algorithm
optimization.

The Concept Demo uses a hierarchical planning representation to model this
process. The two primary constructs in this representation, states and tasks, are
or -anized in hierarchical state-transition diagrams. The transitions represent
tasks which change the states of development objects (requirements,
specifications, code) in the developer’s workspace. A state description is a
predicate used to test the status of one or more of these objects. Since
development objects and project management informat on are represented in an
integrated knowledge-base, it is possible to formalize descriptions of important
states in the progress of system development. This enables the Concept Demo to
evaluate the status of the developer’s workspace automatically, and to identify
transformations which he can apply to achieve his development goals.

Tasks are hierarchically related: each task is either atomic or has one or more
sub-tasks. Tasks may be executable, non-executable, or mixed-initiative in nature.
An executable task can be carried out with little or no human guidance.
Examples of executable tasks include transformations and automatic analysis
routines. To carry out an executable task, the developer needs only to select the
task and (perhaps) respond to system prompts for various parameters. Examples
of non-executable tasks would be gathering and modifying informal
requirements and reviewing a prototype generated from a specification with an
end-user.

As an example of this formalism, consider the Splice-Communicator task. This is
an atomic, executable task which can be performed through invocation of the
“Splice-Communicator” transformation. The transformation’s input is a group of
development objects with an associated marker indicating an illegal slot access.
Its preconditions would determine that the object-group is checked out to the
developer for modification and that the illegal slot reference occurs in the object-
group. Its primary output is a new version, elaborated to include a process
defined to access the slot legally. Splice-Communicator is atomic, so it will not
have a subtask sequence. Its supertask might be, for example, Resolve-Illegal-
Slot-Access. A (simplified) specification of the splice-communicator task is
shown in the Appendix. This specification is expressed in Extended Refine
Specification Language (ERSLa), as described in DeBellis (1990).

The Representation of Development Objects and Their States

Splice-Communicator, like many other transformations, operates on groups of
objects, rather than single objects. The Concept Demo uses a structure called a

5-17

knowledge-base-module (kb-module) to organize the objects in the developer’s
workspace into these groups. A kb-module is special class of object, which
provides encapsulation at a higher-level of granularity than that provided by
existing object-oriented representations. In traditional object-oriented
representations, an object can hide its behavinrs and states by declaring its
methods and slots to be public or private. A kb-module provides encapsulation
at the object (as opposed to the method or slot) level. Objects are associated with
kb-modules and — unless explicitly declared as exported — the objects in one
kb-module are hidden from those in other kb-modules.

As shown in Figure 5-7, each kb-module in the KBSA Concept Demo goes
through four high-level states:

1. Pre-formal KB-Module: containing some pre-formal objects (hypertext
requirements or informal diagrams) that have not been linked to formal
representations.

2. Formal Requirement KB-Module: containing pre-formal objects which have
all been linked to formal declaraticn objects, some of which are not yet
associated with formal implementation objects.

3. Formal Specification KB-Module: containing a formal implementation object
for each formal declaration object, and a formal declaration object for each
pre-formal object.

4. Optimized KB-Module: containing a formal implementation object for each
formal declaration object, a formal declaration object for each pre-formal
object, and associating optimized implementation objects with the formal
implementations wherever appropriate.

Two of the transitions in the diagram are bi-directional: the one between pre-
formal and formal requirements, and that between formal requirements and
formal specifications. The bi-directionality indicates that an iterative process is
often involved in these transitions. For example, in adding implementation-level
detail to a formal specification, one may uncover the need to include additional
requirements.

Informally
Expressed
Requirements

Formal Optimized

Specification
KB-Module

KB-Module

Formel
Specification

Prefor mal

KB-Module

KB-Module

Compiler

Figure 5-7: Highest-Level State Model

We formally define the four high-level kb-module states enumerated above as
predicates, so the Concept Demo can monitor the status of a kb-module at any
time. In Appendix 5.2-A, we show these predicates expressed formally in
ERSLa.

Modeling Three Levels of Software Process Activity

The Concept Demo models development activity at three levels: the kb-module,
the developer’s agenda, and the project. At the kb-module level, the developer
manipulates a set of related knowledge-base components organized into a kb-
module. The kb-module level corresponds to “programming in the small.” At
the agenda level, activity focuses on the identification and prioritization of
various tasks assigned to an individual developer. Models at the agenda level
can be thought of as corresponding to a “programming by the one” paradigm.
The project level integrates the responsibilities and oututs of many developers,
working either as individuals or in teams. This level encompasses both
“programming in the large” and “programming in the many.”

Interactions between the kb-module and the agenda levels occur when an
activity at the kb-module level, such as elaboration of a specification, introduces
items into or removes items from some agenda. After a change in the workspace,
the agenda mechanism is automatically invoked to create new agenda-items
appropriate to the state and the process model and remove those referring to
goals that have been satisfied.

The Concept Demo’s agenda mechanism can propose specific executable tasks

that are likely to resolve issues currently on the agenda based on its knowledge
of states, operations, and goals. Issues on the agenda are represented as goals

5-19

(which are predicates). Tasks have preconditions and postconditions (which are
also predicates). In the simplest case, a goal might match the postcondition of a
certain task and its precondition might already be satis{ied, allowing the task to
be posted to the agenda as a proposed solution for that issue. In more complex
cases, the task’s precondition may not be satisfied, so it becomes the active goal.
This backward chaining may continue until the system finds a sequence of
operations that transforms the current state into the desired goal state (or until it
determines that no such sequence can be automatically constructed for the goal).

Interactions between the agenda and project levels occur when an activity at the
project level introduces changes to a developer’s agenda, or when a change to an
agenda has implications for the overall project. For example, removal of an
ag2nda-item may imply completion of a task which allows logically subsequent
tasks to begin. Agenda-items are only removed when one of three conditions is
true:

* the executable task associated with the item successfully executes;

* the user marks an agenda-item as completed, provides a justification, and the
Concept Demo verifies that the item’s postconditions have been satisfied; or

* external changes to the knowledge-base make the agenda-item irrelevant
(for example, if an item identifies a syntactic problem in a specification
statement, and the statement is deleted, the item will automatically be
removed).

In each case it is possible to record automatically the date and time that the
agenda-item representing the final postcondition of a task was completed, as well
as the identity of the agent who completed it. Similarly, monitoring the status of
the set of agendas enables determination of the overall project status and the
identification of potential difficulties in time for management to take action.

5.2.3 An Extended Example

We now present a detailed example which illustrates the advantages of our
approach. Our example focuses on an Air Traffic Control (ATC) project kb-
module with two sub-modules. The atc-domain sub-module models the aircraft
domain. It contains classes such as aircraft, pilots, flight-plans, controllers, etc.
The atc-system sub-module is a specification for a system to monitor and control
aircraft. Figure 5-8 shows three sub-states of the formal specification state (gray
area) along with the preceding formal requirements state:

* A specification kb-module is considered unresolved if it has unresolved
issues attached to one or more of its formal objects. We have incorporated the
model used in the graphical Issue-Based Information System (Conklin and
Begeman, 1988) to represent issues and resolutions relating to systems.

5-20

During development, users, managers, domain experts, and developers
indicate potential problems with a kb-module by attaching gIBIS objects to
the offending objects.

* A kb-module is resolved if all known issues have been resolved, but the
developer has not yet executed the validation task. The developer may be
awaiting the readiness of another kb-module, perhaps containing its test
cases. Alternatively, he may plan to elaborate some elements of this kb-
module further, but may not yet be ready to do that.

Maintain F
Requiren Unresolved = All Issues
] Issyes i A Resolved
KB-Module Resolve i / ERLVPAEEIPY A

(New Forim
Requi rem

KB-Module

Figure 5-8: Sub-States of a Formal Specification KB-Module

¢ If all validation steps are completed and no new issues or requirements have
been created, the kb-module is in the validated specification kb-module state.
Alternatively, the results of validation can move the kb-module back into
previous states. For example, new issues may be created during an
unsuccessful validation, returning the kb-module to the unresolved state.

As shown in Figure 5-9, validation includes syntactic analysis, resource analysis,
paraphrasing, and simulation. Syntactic analysis identifies low-level errors such
as inconsistent use of types. Resource analysis checks the access patterns of
objects in the kb-module against defined protocols (e.g., exported objects and
used kb-modules). Paraphrasing entails the generation and user review of an
English-like paraphrase of the specification. Simulation includes the definition,

5-21

execution, and review of simulated system behavior, derived from test cases for
the specification.

Yalidate
ATC-System
KB-Module

Generate & Generate &
Review Review Test
Paraphrase Simulations
: Executable Task
i 143 i ANNNNNNNN
[] Mixed Initiative Task PR Reviow \
NN Non-Executable Task <{<"\\

Figure 5-9: Sub-Tasks of Validate Specification

Returning to our example, suppose that the atc-system kb-module is currently in
the “Resolved” formal specification state. Since the developer’s goal is to move
the kb-module to the validated state, the Concept Demo instantiates a task
hierarchy to validate the kb-module. Figure 5-9 shows this hierarchy, and
highlights its mixed initiative nature. The Validate ATC System task includes
both executable and non-executable sub-tasks. Syntactic Analysis and Resource
Analysis are both executable. Upon a command from the user, the Concept
Demo can determine if any syntactic or resource conflicts are present, and will
create issues to describe those conflicts. But while the system can generate an
English-like paraphrase of the specification, it cannot review that paraphrase and
determine how well it matches the intentions of the developers and users.

We use heuristics to define the order in which sub-tasks are performed.
Resolving problems at the syntactic level may lead to the discovery of new
problems at the resource level, so syntactic analysis precedes resource analysis.
Similarly, we perform all executable validation tasks before mixed initiative
tasks. This lets the Concept Demo identify and help resolve as many issues as
possible before the specification is reviewed by human domain experts and
executives, whose time is in high demand.

In our example, suppose that the atc-system kb-module successfully completes
Syntactic Analysis. This analysis and its successful outcome are recorded in the

5-22

Concept Demo’s History Mechanism, which automatically maintains a record of
the sequence of development operations and the knowledge-base state on which
they were performed (DeBellis, 1990). In Resource Analysis, however, an illegal
access by atc-system of the atc-domain kb-module is discovered. As currently
defined, methods and demons in the atc-system specification access the aircraft-
location slot on instances of the aircraft class. Since the aircraft-location slot has
not been exported from the atc-domain kb-module, the interface conventions of
the atc-domain kb-module have been violated (see Figure 5-10). This violation is
detected by the Resource Analysis, and an issue is created to mark this problem.
The execution of the analysis, its unsuccessful outcome, and the specific issue
created are captured by the Concept Demo History Mechanism.

The creation of a new unresolved issue has moved the atc-system kb-module
back into the unresolved state. From the description of the issue and its
knowledge of task postconditions, the Concept Demo can propose two
alternative resolutions. The first resolution is to apply the export-object
transformation . This would export the aircraft-location slot from the atc-domain
kb-module. The second resolution is to apply the splice-communicator
transformation. This would require the user to specify a communication slot or
method which was visible to both kb-modules and could be used to
communicate the value of the aircraft-location slot to the atc-system kb-module.

KB-rModule KB-Module
ATC-Domain 7 ATC'SU3tem
method: report-location (ac:aircraft)
Method: print-to~screen(“Aircraft is at

Report-Location location ~a", aircraft-locstion(ac))

c1333: ‘k Uses: \/
Aircraft aircraft-location
' /\ demon maintein-course (ac: aircraft)
Demon: when expected-location(ac) ~=
Maintain-Course sircraft-location(ac) do
initiate-course-correction(ac)

Figure 5-10: Illegal Access of Aircraft-Location Slot

An aircraft’s location is only known to the real-world ATC System through
intermediary processes such as radar tracking or visual observation. The
developer therefore chooses to apply the splice-communicator transformation, as
its effect will more closely correspond to the domain. The Concept Demo then
adds a new class (radar) to the ATC-Domain kb-module. It also adds two new
slots:

5-23

¢ radar-unit, which points from an aircraft to the radar on which it is

monitored, and

¢ radar-track, which holds a representation of the location of the aircraft.

Another result of the splice-communicator transformation is that the radar-track
and radar-unit slots are automatically exported from the atc-domain kb-module.
In addition, all the methods and demons in the atc-system kb-module which
accessed the aircraft-location of aircraft have now been modified to access the
radar-track of the radar-unit which monitors that aircraft. Figure 5-11 illustrates
the resulting situation. Again, the enactment of the Splice-Communicator
transformation and its successful result are captured automatically by the

Concept Demo History Mechanism.

KB-Module
ATC-Domain

KB-Module
ATC-System

radar - unit: points
[~ to reder monitoring
gircraft

Class:
Aircraft

Xai rcraft-location

Method:
Report-Location

method: report-location
(ac:aircreft)
print-to-screen(“Aircraft is at

/

location Ta",
radar -track(radar - unit(ec)))

Uses:
Radar radar-track,
Demon radar - unit
7~ X\
Class: [~ Demon:
modifies: Rader '\\L‘lal ntain-Course
rader-treck \/

demon maintain-course (ac: aircraft)
when expected-location(ac) ~=
rader-traeck(radar-unit(ac)) do
initiate-course-correction{ac)

Figure 5-11: Resource Conflict Resolution

5.2.4 Discussion

5-24

The example above shows how the synthesis of Al planning techniques and
knowledge-based software development can provide the benefits we discussed
in this section’s introduction.

* Stronger guidance in transformation selection: Because our process model
formalism defines the set of possible kb-module states, the Concept Demo can
determine the current-goal state for any kb-module. Further, since the
formalism includes explicit definitions of specific transformations, the
Concept Demo can identify candidate solutions with preconditions that
match the kb-module’s current state and post-conditions that match its
desired state. Thus, in the example above, the Concept Demo Agenda
suggests two candidate transformations which can resolve the illegal access
issue.

¢ Better development process traceability: At the completion of each
development step in our example, the Concept Demo History Mechanism
automatically recorded the action taken, its outcome, and the resulting state
of the knowledge-base. In the case of the Splice-Communicator
transformation, this included information describing its rationale (i.e.,
performed to resolve illegal-slot-access and a reference to the hypertext
description of the illegal-slot-access), providing strong traceability.

* Higher-level development operations: As illustrated in the example, the
Splice-Communicator transformation creates a new class, defines two key
slots on that class, and modifies existing methods and demons such that they
access the appropriate slot on the new class. This is all performed in a single
operation, with strong consistency maintenance capabilities, illustrating the
power of transformation-based software development.

* Finer-grained planning capability: In most conventional environments, the
Al-planner’s recommended response to the illegal-slot access issue would
have been “edit ATC System data-flow model” to correct the issue. The
Concept Demo, because its model includes strong descriptions of specific
transformations, is able to suggest more specific responses (Export-Object or
Splice-Communicator).

* Mixed-initiative development: As Figure 5-9 shows, our formalism explicitly
models executable, non-executable, and mixed-initiative tasks. In the
example itself, the developer is presented with suggestions as to possible
resolutions for the illegal-slot-access issue, but retains the ability to select the
appropriate one. Further, at the developer’s discretion, he can use a
completely different technique that may be more appropriate in a specific
development situation.

£very modeling formalism has its advantages, so it is important to examine each
one against more general criteria, as well as against its own claims. We will now

5-25

“

evaluate our formalism against a set of process modeling criteria proposed by
Chroust and reported by MacLean (1988). Chroust identified four important
characteristics to be considered when evaluating a process modeling formalism.

1. Humans should be able to understand the model(s), both in simplified and in
complete versions. The basic concepts in our model — task and state — are
intuitively meaningful and familiar to most software development professionals.
Their formal representations, as shown in the Appendix, can be interpreted
meaningfully after a brief orientation to ERSLa syntax. As envisioned in the
original KBSA statement (Green et al, 1983), the Concept Demo employs mixed-
initiative interaction, enabling the developer and the system to complement each
others’ knowledge and expertise.

Further, as suggested by Kellner and Hansen (1988), we use generally accepted
representations (both graphical and text-based) and present multiple,
complementary views of the process to enhance the model’s intelligibility. For
example, we use trees to show structural relationships in the product and process
hierarchy models. We use state-transition diagrams to depict the possible
sequence of states a kb-module will evolve through as it is elaborated, although
this kb-module state information is available only in text display in the Concept
Demo delivery version. The text-based agenda is also familiar to most users. In
all these presentations, the user has the ability to select the level of detail that is
most relevant to the task at hand.

Perhaps most importantly, the transformations modeled in our formalism are
defined as meaningful software engineering operations (e.g., splice-
communicator) rather than document-based editing (e.g., insert-character). And
the plan-based aspect of the model enables the association of transformations
with both local and higher-level objectives, to provide even stronger information
about the model’s underlying logic. This helps our model satisfy Chroust’s
human understanding issue.

2. The model(s)should be interpretable by machines (e.g., computers). Since all
the elements of the Concept Demo process model are expressed in a formal,
executable language, ERSLa, our formalism satisfies Chroust’s second issue,
machine intelligibility. Indeed, the integration of the formalism with the
powerful automated support provided by transformation-based development
satisfies the requirement that the modeling approach “offer automated tools
supporting the approach” (Kellner and Hansen, 1988, p. 27).

3. The model(s) should be adequate for use in industrial software development
context, and should include the ability to express information about the
necessary ancillary services. The adequacy of our model for use in an actual
industrial environment has yet to be demonstrated. Its only application to date
has been in a single-user, concept demonstration prototype system. The large
amount of knowledge stored about each development object and task may

5-26

require the use of hardware and system software environments considered non-
standard in industry. As discussed above, we also need to model multi-user
development capabilities in the model prior to its application in a large-scale,
real-world development project.

4. The model should be easy to manipulate, including the ability to modify,
compare, and combine process models. Our formalism enables the manager to
create, tailor, and combine process models in a flexible fashion. First, the plan
structure has been developed in an object-oriented environment, bringing that
approach’s powerful support for reuse and adaptation. Second, the
transformation-based development paradigm allows the capture and replay of
transformation sequences (cf. Goldberg et al, 1989). Most importantly, the Al
planning paradigm itself, as noted by Huff (1988), supports these characteristics
as shown by capabilities such as failure recovery, detection and resolution of
conflicting actions, identification of shortcuts, and goal revisions.

Our model satisfies Chroust’s first, second, and fourth points, but the jury is still
out on point three (suitability for industrial application). We regard the current
Concept Demo process model formalism not as a destination, but rather as a
promising avenue for further exploration of process model representations and
the demonstration of the feasibility of the KBSA vision.

5.2.5 Possible Extensions of the Current Formalism

There are three ways in which the Concept Demo delivery version does not fully
implement the model described above. First, our work has focused only on
sophisticated guidance for an individual developer. However, as discussed
above, we believe that we can provide multi-user capabilities similar to those
developed by Mi and Scacchi (1990) by integrating their process representation
meta-model with ours. This would also enable us to add a process model query
facility like that in their Articulator. In addition to the current actual status
information available via the Concept Demo’s general object display mechanism,
this would enable the user to get information about previous model states
(development history) and possible model states (a what-if capability).

Second, to provide guidance to the developer, the current system relies
exclusively on stored knowledge describing the interdependencies of
development tasks and possible states of products. We did not integrate a
theorem prover, but consider feasible and desirable the possibility of adding a
direct inferencing facility such as that provided in the KBSA Development
Assistant (Smith, 1991).

Finally, the Concept Demo delivery version offers only limited capabilities
supporting the reuse of process models, although strong potential for this exists.
The reuse and replay approach suggested by Goldberg et al (1989) and the
replanning capabilities discussed by Huff (1988), can be used to develop

5-27

transformation-like capabilities for the adaptation of individual process models,
enabling their continued use in dynamic environments as well as their revision
for employment in different contexts.

Appendix 5.2-A: Splice-Communicator Task Definition
and KB-Module State Descriptions Expressed in
Extended Refine Specification Language

Task Definition: Splice Communicator

task splice-communicator
subclass-of evolution-transformation
subtask-of RESOLVE-ILLEGAL-SLOT-REFERENCE
input-products (referenced-module: kb-module,
referencing-module: kb-module, illegally-accessed-slot: slot) preconditions
{assigned-developer (kbm) = current-user,
checked-out-to (kbm) = current-user,
illegally-accessed-slot in owned-objects(referenced-module) &
ex(x) x in owned-objects(referencing-module) &
illegally-references(x, illegally-accessed-slot)),
postconditions
{forall(x) x in owned-objects(referencing-module) =>
legally-references(x, illegally-accessed-slot)}

KB-Module State Definitions

function empty-module?: map(kbm: kb-module) :boolean =
empty(owned-objects(kbm))

function preformal-module? (kbm: kb-module) :boolean =
ex(s0) (so in owned-objects(kbm) & preformal-requirement?(so))

function formal-requirements-module? (kbm: kb-module) :boolean =
~preformal-module?(kbm) &
ex(so) (so in owned-objects(kbm) & unmaintained-requirement?(so))

function formal-specification-module? (kbm: kb-module) :boolean =
~empty-module?(kbm) &
~preformal-module?(kbm) & ~formal-requirements-module?(kbm)

function optimized-module? (kbm: kb-module) :boolean =
formal-specification-module?(kbm) &
forall(xXx in owned-objects(kbm) => checked-for-optimizations?(x))

function formal-requirement?(obj: object) :boolean =
invariant?(obj) or function-with-conditions?(obj)

function preformal-requirement?(obj: object) :boolean =
hypertext-requirement(obj) & empty(formalized-by(obj))

function unmaintained-requirement? (obj: object) :boolean =
formal-requirement?(obj) & empty(maintained-by(obj))

5-28

6. Recommendations and Conclusions

This section describes our recommendations and conclusions based on the
overall Concept Demo effort.

6.1 Recommendations for Future Design Decisions and Standards

In this section we address the requirements in sections 4.2.6 of the Concept Demo
SOW. Section 4.2.6 requires documentation of:

“... design decisions that should be considered by future efforts initiated under
RADC'’s KBSA program, and shall address, as a minimum:

a. Enhancement of hardware platform independence.

b. The need for consistent interface definitions and communication protocols.

¢. Environment services that should be present at different levels of granularity to
support both commonality in usage and specialization.

d. KBSA-environment extendibility that supports the integration of new
functionality in a uniform way.”

In section 6.1.1 we discuss the use of commercial software. This was one of the
most significant design decisions in the Concept Demo and is relevant to
hardware independence of future KBSA systems (point a. above). In section 6.1.2
we describe the support environment for the Concept Demo and how that
environment could be generalized to a KBSA support environment (point c.). In
section 6.1.3 we discuss emerging interface and communication standards for
Software Engineering Environments and how those standards could be used to
build a KBSA-environment in an extendible way (points b. and d.).

6.1.1 Use of Commercial Software

One of the most significant design decisions made in the Concept Demo project
was the decision to build the system on a commercial off the shelf (COTS)
platform (Refine). The following describes pros and cons of using COTS tools in
light of our experience with the Concept Demo. We first discuss the two
arguments most frequently made against the use of COTS tools and then discuss
lessons learned from the Concept Demo that are relevant to these arguments.

The standard arguments heard against the use of COTS tools involve cost and
flexibility.

1) Cost. COTS technology increases the cost of both the development and run-

time environments for a research prototype system. This can take away resources
from the research effort and make it more difficult to distribute the prototype.

6-1

2) Lack of flexibility. Researchers do not like to be constrained by using tools
that do not provide source code. COTS tools may enforce constraints on the
implementation of certain types of functionality.

For the following reasons we believe that these arguments are often given too
much weight when considering whether or not to use a COTS platform.

1) Cost of COTS versus cost to rebuild functionality. When considering the cost
of using a COTS development environment, the cost for developers to build the
functionality that already exists in the COTS tool — as well as the increased
productivity that will be gained from using a more robust and well documented
COTS development environment — must be factored in. When this is done, it
will almost always be the case that the cost of the COTS tool is significantly less
expensive than the cost to rebuild even a subset of its functionality.

2) Cooperation of COTS vendors. Most of the vendors of technology related to
KBSA are eager to participate in research projects and to see prototypes
developed using their environment. This participation increases their visibility
and gives them access to new potential customers interested in advanced
technology. Cooperative participation of vendors can result in discounts for run-
time versions of prototype systems. In addition, vendors are often willing to
provide normally hidden information to researchers allowing them to extend or
modify the functionality of the COTS tool itself. For example, Reasoning Systems
provided significant discounts for limited-use Refine licenses for technology
transfer of the Concept Demo. In addition, Reasoning on several occasions
provided extremely valuable support to help Concept Demo developers
understand and modify internal features of the Refine language and
environment.

3) Hardware and operating system portability. Building KBSA functionality on
a COTS platform should significantly increase the portability of future KBSA
systems. COTS vendors have a significant incentive to port their tools to various
platforms and to minimize the work that must be done to port applications built
using their tools from one supported platform to another. For example,
commercial interface building packages such as Open Interface™ from Neuron
Data allow developers to create interfaces that can be ported across various
window managers and operating systems. These interface builders typically
allow developers to create interfaces that can easily port to and from Motif, Open
Look, Microsoft Windows, the Macintosh Interface, etc. Use of such interface-
building tools and other COTS tools such as object-oriented databases and expert
system shells would significantly increase the platform independence of future
KBSA systems.

6.1.2 KBSA Environment Services

6-2

Figure 6-1 illustrates the general functionality developed for the “CD
Framework”. As described in section 2.3.1, the CD Framework consists of
functionality that spans the software development life-cycle. In the Concept
Demo it was used to integrate existing KBSA systems and as a foundation for
requirements, specification and process guidance functionality.

ERSLa |process Presentation-based Interface
Dialect |[Representation Intervista
Refine KB Common Windows
Common Lisp

Unix & X Windows
Figure 6-1: Block Diagram of the Concept Demo Framework

Req/Spec
Languages Knowledge-Based Presentation-based
Language Process Management Interface

Meta-Models

Language Extended Transactions & Window
Modeling | Configuration Management| ~ Utilities

KB Language

Programming Languages & OODB
Operating System & Window Manager
Figure 6-2 Block Diagram Proposing General KBSA Service Layers

Figure 6-2 shows a block diagram that is a generalization of the services provided
by the Concept Demo framework. Figure 6-2 also adds services that were not
required in the Concept Demo because it was primarily a single-user system. In
the following we describe the layers in figure 6-2 and, where appropriate,
describe commercial technologies that provide some or all of the functionality
required for a particular layer.

Operating System & Window Manager. Recent KBSA efforts seem to have
achieved a de-facto standard for hardware, operating systems and windowing
environments. Recent KBSA projects by Software Options, Kestrel, IS, Sanders,
and Andersen Consulting have used Unix (almost exclusively Sun) workstations
running X windows. We believe that this is a good standard to adhere to for the
near future.

Programming Languages & OODB. The Concept Demo was implemented

exclusively on top of Common Lisp. Future KBSA systems will need to support
multiple programming languages - at the very least to test code generated for

6-3

run-time systems and most likely for the various tools to support the
development environment as well. In addition, an object-oriented database will
be essential to provide knowledge-base support for multiple users. This level
should utilize commercial environments to support languages such as C++ and
Lisp and a commercial object-oriented database.

KB Language. This corresponds to the “Refine KB” layer in figure 6-1. This layer
consists of capabilities found in object-or‘ented and rule-oased systems — classes,
inheritance, message passing, inference engines supporting forward and
backward chaining, etc. Examples of this layer in other KBSA environments are
APS, Socle, and Loglisp. There are several commercial tools on the market that
provide sophisticated KB language support implemented in Lisp and C. These
include Refine, Prokappa, and Art-IM.

Language Modeling. This corresponds to the “Dialect” layer in figure 6-1. This
provides the ability to specify grammars which correspond to object meta-
models for the language. That is, when parsing a language construct, the parser
generated by a KBSA language modeling tool will create a parse tree tha isa
composite of instances of objects in the meta-model. For example, in Ret..e,
parsing a function will create an instance of the class “function”. That instance
will have slots that point to the parameter list, the return type, and the body of
the function. The value of each of these slots will in turn be an instance of another
object in the meta-model which will further be decomposed into slots and values
corresponding to the parse tree of the function. This object-based representation
of parse trees makes writing general purpose analyzers and transformations
much easier. We also include the transformation engine in this layer since it
should be tightly coupled with the parser generator (e.g., the parser generator
should output patterns that can be used by the transformation engine). The other
example of this layer in current KBSA environments is the POPART system from
ISI.

This language modeling capability is one of the most important new technologies
to emerge from the KBSA effort to date. This "5 the primary reason that KBSA has
had a big technology transfer impact on re-engineering - language modeling can
be used to model and analyze systems in existing programming languages. The
only commercial tool that currently provides these capabilities is the Dialect
component in Refine.

Extended Transactions and Configuration Management. This layer is not
present in the Concept Demo because the Concept Demo is primarily a single-
user system. This layer extends the object-oriented database with capabilities
required for group design environments. Gail Kaiser describes the capabilities
needed for this layer in [Kaiser 88b]. Examples of KBSA environments that
provide such capabilities are the Artifacts system [Karr 89] and the configuration
management system in the KBSA Framework [Larson 90]. Some of the better
object-oriented database systems provide a subset of this layer. We believe that

6-4

the best approach for KBSA is to build this layer on top of a commercial object-
oriented database.

Window Utilities. This layer corresponds to the Common Windows/Intervista
layers in the Concept Demo and to “Level 1” (Building Blocks) in the KBSA User
Interface Environment (KUIE) [Larson 90]. This layer provides an object-oriented
front end to window manager functionality and also provides general classes
useful for software development environments such as icons, links, etc. There are
several C and C++ based commercial tools that provide most of the functionality
required for this layer. As described above, one of the advantages of using such
tools is that they provide support for porting user-interfaces to various operating
systems and window managers.

Language Meta-Models. This layer consists of meta-models for programming
and requirements and specification languages. In the Concept Demo, this layer is
implicit in the ERSLa layer. We make it an explicit layer here to emphasize that
future KBSA environments will contain meta-models of programming languages
used for code generation as well as various requirements and specification
languages. There are currently no commercial implementations of this layer (or
any of the following layers).

Requirements and Specification Languages. This layer corresponds to the
ERSLa layer in the Concept Demo. We use the plural here to emphasize that
future KBSA environments will eventually contain multiple specification and
requirements languages. In fact, even in the Concept Demo there were small
grammars in addition to ERSLa for describing hypertext networks and kb-
modules. There are currently no commercial implementations of this layer.

Knowledge-Based Process Management. This corresponds to the task classes
and methods inherited from the PMA and extended in the Concept Demo. Other
examples of process representation formalisms are transaction graphs [Karr 90]
and the rules in Marvel [Kaiser 88]. There are currently no commercial
implementations of this layer.

Presentation-based Interface. This corresponds to the presentation-based
interface described in detail in section 2.3.1.1. and to level 2 in KUIE. Other
examples of presentation-based interfaces are the interfaces in the KBRA [Harris
88] and Aries [Johnson 90)}. There are currently no commercial implementations
of this layer.

6.1.3 Interface Definitions and Communication I'rotocols
The KBSA community should not invent its own interface definitions or
communication protocols. There is significant progress being made in defining

Open Systems and CASE standards. KBSA should pay close attention to these
standards and adhere to them as much as possible. Adherence to such standards

6-5

will allow KBSA systems to smoothly incorporate existing conventional tools
such as editors, compilers, etc. Adherence to such standards will also allow
existing conventional environments to incorporate individual KBSA modules
with functionality such as language modeling, transformations, specification
languages and analysis, etc.

The CASE standard that currently seems the most promising is PCTE. It has
several factors in its favor:

1) It is object-oriented and thus will not hinder the development of a
knowledge-based repository the way a relational repository standard
would.

2) It is an emerging standard for software engineering tools used by the
DoD. For example, Cadre, Digital, Hewlett-Packard, Sun, and Bull all have
CAGSE tools that are committed to using PCTE. In addition the STARS
program and the new version of SLCSE being developed by ISSI for Rome
Laboratory plan to be PCTE compliant.

3) It has recently been adopted by IBM as part of IBM’s AD-Cycle CASE
standard.

6.2 Lessons Learned: Technology Transfer

As of September 30, 1992, nine organizations had acquired KBSA Concept Demo
licenses and ten other licenses were in process. To gauge the effectiveness of the
Concept Demo with respect to its technology transfer objectives, we conducted a
survey of the licensee organizations to learn about their experiences with the
Concept Demo. Similarly, we conducted a survey to understand what issues had
slowed the completion of the licensing process in the organizations that had not
completed the licensing process. A full description of the responses is provided
in Appendix A of this report.

Of the nine licensees, we received responses from seven (78% response rate).
These organizations are identified using the following coding scheme:

Code Organization Description CD Training?
L1 DoD Graduate Institute (U.S.) Yes
L2 Non-profit Analysis Al Research Center (U.S.) No
L3 Industrial (Petroleum Services) CS Center (U.S.) No
L4 Industrial (Systems) Development Group (U.S.) No
L5 Industrial (Telecom) R&D Center (U.S.) Yes
L6 University Computer Science Dept (Middle East) No
L7 Federal (Non-DoD) Technology Institute No
6-6

Two licensees did not respond: a non-profit research center (U.S.) and an
industrial (defense) software technology group (U.S.). Of the ten organizations
currently in the licensing process, we received feedback from eight of them (80%
response rate). These organizations are coded as follows:

Code Organization Description Refine?
N1 University Research Center (U.S.) No
N2 University Research Center (U.S.) No
N3 University Research Center (FDR) No
N4 DoD Training Center No
N5 DoD Research Agency No
N6 University Research Center (U.K.) No
N7 Industrial (Telecom) Technology Center (US) No
N8 Non-Profit Research Institute (U.S.) No

Two in-licensing-process organizations did not respond to the survey: a
university computer science group (FDR) and a non-profit software engineering
center (U.S.).

A representative of N5 attended the Concept Demo training program, but is no
longer involved in that organization’s Concept Demo acquisition efforts. None of
the other in-license-process organizations have been representedat Concept
Demo training programs.

The feedback we received appears to support our claim [Sasso 1991] that the
transitionability of KBSA technology can be projected using the technology
transfer model proposed by [Rogers 1983]. Rogers suggests that the perceived
presence of four factors (relative advantage, compatibility, trialability, and
observability) will encourage the transfer of a new technology, while its
perceived complexity will discourage adoption.

Relative Advantage: The greater the extent of the new technology’s perceived
superiority over existing technologies, the greater will be its likelihood of
adoption.

Demonstrations have been reported by two of the licensees (L1! and L4). The
demonstrations conducted by L1 appear to have generated enthusiastic support
for and interest in KBSA technology. Those conducted by L4 appear to have been
less successful in this regard. As more licensees conduct demos and report the
reactions of their audiences, we hope to identify and report the factors that are
associated with more successful demonstrations.

1The codes used in this section index survey respondents (ie.g., L1) and their specific comments
(c.g., L1-4. denotes the response by organization L1 to question 4). These commetns are presented
in Appendix A of this report.

6-7

Compatibility: The greater the consistency between the values, approaches, and
technical infrastructures required by the new technology and those of its
potential adopters, the greater its likelihood of adoption.

Trialability: The greater the extent that the new technology can be tried out in an
experimental, low-risk situation, the greater its likelihood of adoption.

From the information reported above, compatibility and trialability appear
closely related in this case. Where the technical infrastructure of the Concept
Demo (specifically, the Software Refinery environment) is compatible with that
of the licensee, the stakes involved in trying the Concept Demo out are perceived
as much lower (see comments N1-2, N2-1, N2-3, N3-1, N4-1, N5-1, N6-2, and N7-
2). There appear to be two components of this increased hassle of licensing:
bureaucratic organizational license approvals and processing (see N3-1 and N5-
1) and the additional cost of acquiring the Software Refinery and Franz Allegro
Common Lisp (see N1-2, N2-1, N2-3, N4-1, N6-2, and N7-2). Similarly, one
licensee reported that previous experience with Refinery facilitated the
installation process (L4-1).

These comments underline the wisdom of Rome Laboratory in its inclusion in the
Concept Demo statement of work the requirement that transferable licenses for
software necessary to run the Concept Demo be delivered as part of the project
deliverables. These should facilitate the diffusion of KBSA technology, by
enabling Rome to reduce the up-front investment required to take the Concept
Demo for a “test drive.”

Observability: The greater the degree to which the benefits of the technology’s
use are visible to the adopter, the greater the likelihood of its adoption.

Complexity: The greater the extent to which the users perceive the new
technology as difficult to learn and use, the lower its probability of adoption.

These preliminary comments also suggest that observability and complexity can
be discussed together in this analysis. Only four of the responding licensees (L1,
L2, 14, and L5) have reported actual hands-on experience, and one of these (L5)
is very reticent in his responses. Comments made by L1 (L1-3 and L1-7) and L2
(12-7) suggest that the impact of KBSA technology is observed fairly easily in the
Concept Demo, while L4's audience (L4-3) appears less convinced. L1, L2, and
L4 all suggest that the Concept Demo documentation could be improved (L1-7,
L2-7, L4-2,14-2).

Only (L1) can describe working with the technology in a more free-form fashion.
Its comments (L1-4 and L1-5) are positive, but tentative.

6-8

General Discussion: L1 has clearly reported best experience and demonstration
results, and is clearly the most experienced and familiar with the Concept Demo.
Representatives of this organization attended a Concept Demo Training Session.
This suggests that the Concept Demo can clearly serve as an effective vehicle for
communication of the KBSA paradigm, but that significant familiarity (with both
the paradigm and the CD itself) is a prerequisite for effective demonstration and
explanation.

6.3 Conclusions

In this section, we summarize the major accomplishments and lessons learned
from the Concept Demo.

6.3.1 KBSA Integration

The Concept Demo is the first KBSA system to demonstrate coverage across the
life-cycle — from informal requirements to formal specifications to code. It is also
the most significant integration to date of previous KBSA concepts and
technology.

Omnipage’
Scan
hardcopies to
RTF forma

Hypertext /Requirements
ization & ERSLa

— p{ Organization

formalization

RTF RTF =>
Hypertext
translator

Specification
development &
elaboration

ARTF

Hypertext

MS Word™ I

Develop Developmen Regrou
requirements Create ‘ " group
documents hypertext via Amm. |

CD interface Algorithm - —
. design & code
Objects generation
————— Files

Figure 6-1: Life-Cycle Coverage in the Concept Demo

Figure 6-1 illustrates the life-cycle coverage of the Concept Demo. Informal
hypertext requirements can be developed either by scanning hardcopies of
existing requirements documents, using a WYSIWYG editor such as Microsoft
Word, or using the Emacs interface provided by the Concept Demo. The
informal requirements can then be formalized and elaborated using evolution
transformations and specification feedback. Finally, the resulting system can be
input to the Development Assistant which can transform the specification into
efficient code.

Aries
Develop Aries
Gist specs

CD Framework -
Req/spec
functionality

Gist =>
ERSLa
translator

_____ Files Algorithm <_Re_g_roy_p

design & code
generation

Figure 6-2: KBSA Integration in the Concept Demo

Figure 6-2 highlights the integration of KBSA technology in the Concept Demo.
The Concept Demo provided the first integration of a system built at ISI (the
Aries system) and Kestrel (the Development Assistant). This integration was
made possible by the cooperation of ISI, Kestrel, and Andersen Consulting.

¢ ISI developed a new version of Gist as part of the Aries project. The Aries
version of Gist used a syntax similar to the Refine language. ISI also
developed a translator that translates most constructs from Aries Gist into
ERSLa.

¢ Kestrel developed the Regroup language as a superset of the Refine
language and made it available to Andersen Consulting a year before the
completion of the Development Assistant project. The previous
specification language used in the Performance Estimation Assistant
(Performo) did not support Refine capabilities such as the assignment of
slot values to knowledge-base objects. These capabilities are essential to
languages such as Gist and ERSLa.

* Andersen Consulting developed the ERSLa Language which extended
the Regroup language with constructs from Gist such as invariants and
demons.

The technical integration of Aries and the Development Assistant is only the first
step to true KBSA integration. This technical integration pointed out that the
style of specification supported by Aries is significantly different from that
supported by the Development Assistant. Aries specifications consist of a
mixture of declarative constructs (e.g., invariants and pre/post conditions) and
operational constructs (demons, functions, and procedures with bodies).
Specifications for the Development Assistant must be purely declarative. In

6-10

addition, Development Assistant specifications must be written as domain
theories. This requires the creation of a large set of distributive laws as a major
part of the specification. It takes a significant amount of training (even by
developers with strong backgrounds in logic and formal methods) to create such
domain theories.

The advantage of the Aries approach to specifications is that it is more intuitive
and easier for the average developer to use. The advantage of the Development
Assistant approach is that it provides a rigorous distinction between the “what”
and the “how” since the specification is purely declarative. Further, it supports
the design of algorithms using meaning-preserving transformations. The
reconciliation of these two approaches is a significant issue for future KBSA
research.

6.3.2 Architecture for Intelligent Assistance

The Concept Demo was the first KBSA system to demonstrate intelligent
assistance. Previous systems provided very sophisticated tools, but did not
provide feedback or guidance to the developer on how to use those tools. The
intelligent assistance for the Concept Demo included a general architecture that
integrated concepts from process-based environments such as CLF and
transformation-based environments such as the Specification Assistant. This
architecture demonstrated the following:

e An integrated process-support environment capable of invoking
traditional tools (e.g., editors) as well as transformations.

* An environment that supports traditional styles of work while providing
the benefits of formal development techniques and process support. For
example, developers can achieve the benefits of a formal specification
language while editing and viewing the specification language through
graphic interfaces.

¢ Integration of low-level tasks such as transformations with higher level
project-management tasks. This automates many project management
activities (e.g., updating the status of project-management tasks based on
activities performed in the developers workspace).

e An open architecture that separates the user-interface, product/process
analysis, product transformations, and process automation into
independent modules.

The Concept Demo architecture is a design for a KB-CASE tool that could be
built using existing technology. A KB-CASE tool would provide the ability to use
transformations in combination with traditional tools (such as editors). Where
appropriate, the power of transformations can be applied; where that technology

6-11

is not yet developed, conventional support can be provided. A KB-CASE tool
would not require radical changes in the way developers work, but it would still
provide them with many of the advantages of process-based and formal
development environments. The open architecture of a KB-CASE tool would
allow it to incorporate emerging mature technology from the KBSA program and
to gradually evolve into a full-fledged KBSA.

6.3.3 A KBSA Process Model

Section 5 (above) has presented a high-level overview of one possible process
model for software development in a KBSA environment. The model’s major
activities are organized around the degree of formalization and elaboration of the
software development artifact. They need not proceed in lockstep, but rather
provide the developer with strongly integrated facilities enabling rapid cycles of
software development, validation, elaboration, and ongoing enhancement. The
model recognizes that support is needed for the acquisition and organization of
pre-formal requirements information as well as for the creation and extension of
formally expressed specifications, and extends an earlier model to do so. It
recognizes the importance of interfacing with existing systems and the recovery
of procedural knowledge embedded within them, and provides these capabilities
by inclusion of Software Reverse Engineering as a top-level activity.

By integrating an Al planning formalism with a knowledge-based software
engineering environment, the Knowledge-Based Software Assistant Concept
Demonstration System exemplifies significant advantages over conventional
development support. These include (1) stronger guidance in the selection of
development operations; (2) better development process traceability; (3) more
powerful development support; (4) finer-grained planning capability; and (5)
mixed-initiative development. This section will describe the planning formalisms
used to accomplish this integration, and present an example illustrating these
benefits.

6.3.4 Formal Validation Extension

The goals of the formal validation extension to the KBSA Concept Demo project
were to study the techniques used in the KBSA paradigm to improve the
software development process, identify development phases where formal
validation is necessary, and then explore formal validation techniques that can be
applied to those phases.

We found that there was a need for reducing the complexity of validating the
specifications developed using the existing KBSA systems. We determined that
the complexity of the validation task could be reduced if it could be broken down
into incremental validation steps that accompany incremental evolutionary

6-12

development. Formal techniques can be applied to design evolutionary
operations that support such incremental development and validation.

We accomplished the following in this project:

¢ Developed a conceptual model for incremental evolution and validation
of specifications.

¢ Put the evolution transformations in a more general software reuse
framework and discovered that retrieval and composition operations were
useful for evolutionary development and were missing in the current
KBSA.

¢ Designed formal operatior. Jr performing composition of
specifications in an attempt to f1ll the gaps mentioned above.

¢ Implemented these formal operations to run on a subset of the formal
specification language, ERSLa.

* Developed and implemented a scenario that demonstrates the use of the
composition operations.

As part of future work we intend to design formal operations for component
retrieval, and put the evolution transformations in the current Concept Demo
system (the adaptation operations) in this formal framework. We will also study
the interaction of retrieval, adaptation, and composition operations to guide
developers in the specification development process.

6-13

7. Bibliography

Andersen Consulting, “KBSA Concept Demo User's Manual”, Contract No.
F30602-89-C-0160,CDRL Sequence No. A005, Beta Distribution version, July,
1992.

Balzer, R. A 15 Year Perspective on Automatic Programming. IEEE Transactions
on Software Engineering. SE-11(11): November 1985.

Barghouti, N. and Kaiser, G. Multi-Agent Rule-Based Software Development
Environments. Proceedings of the 5th Annual Knowledge-Based Software
Assistant Conference, pages 375-387. Syracuse, NY: 1990.

Barghouti, N. and Kaiser, G.E., "Concurrence Control in Advanced Database
Applications", ACM Computing Surveys, Vol. 23, No. 3, September 1991.

Blaine L. , Goldberg et al., “Progress on the KBSA Performance Estimation
Assistant”, Proceedings of the 3rd Knowledge-Based Software Assistant
Conference, 1988.

Boehm, Barry W. A Spiral Model of Software Development and Enhancement.
IEEE Computer (May 1988).

Cabral, Gui and M. DeBellis, “Domain Specific Representations in the KBSA
Concept Demo”, Proceedings of the 6th Knowledge-Based Software Assistant
Conference, 1991.

Cohen, D. AP5 Manual, USC Information Sciences Institute, 1985
Conklin, J., and M. Begeman. “gIBIS: A Hypertext Tool for Exploratory Policy
Discussion.” Proceedings of the Conference on Computer Support for Cooperative Work.

Portland, OR: 1988, pp. 140-152.

Curtis, B. Empirical Studies of the Software Development Process (presentation).
Software Process Symposium. Washington, DC: September 17-18, 1990.

Daum, M. and Jullig, R.J., “Knowledge-Based Project Management Assistant for
Ada Systems”, RADC-TR-90-418, 1990.

Day, W. Distributed Multi-Agent Planning (technical report). RADC-TR-90-410.
December, 1990.

DeBellis, M., “The KBSA Concept Demonstration Prototype”, Proceedings of the
5th Knowledge-Based Software Assistant Conference, 1990.

Feather, M. Detecting Interference When Merging Specification Evolutions.
Proceedings, S5th International Workshop on Software Specification and Design.
1989.

Fikes, Richard, and Tom Kehler. “The Role of Frame-Based Representation in
Reasoning”, Communications of the ACM, 28(9): September 1985.

Gilham, Li-mei, Jullig, Richard, Ladkin, Peter, Polak, Wolfgang, “Knowledge-
Based Software Project Management”, Kestrel Institute Technical Report:
KES.U.87.3, November, 1986.

Gilham, Li-mei, Goldberg, Allen, Wang, T.C., “Toward Reliable Reactive
Systems”, Proceedings of the 5th International Workshop on Software
Specifications and Design, Pittsburgh, PA., May 1989.

Goldberg, A. L. Blaine, T. Pressburger, X. Qian, T. Roberts, and S. Westfold.
KBSA Performance Estimation Assistant (final technical report). RADC-TR-89-98.
August, 1989.

Goldberg, A.. Reusing Software Developments. Proceedings of the 4th Annual
Knowledge Based Software Assistant Conference. September, 1989.

Goldman, N. Three Dimensions of Design Development. ISI/RS-83-2. July, 1983.

Green, C., .Luckham, D., Balzer, R., Cheatham, T. and Rich, C., “Reporton a
Knowledge-Based Software Assistant,” RADC TR 83-195, Contract No. F30602-
81-C-0206, Kestrel Institute, Palo Alto, California, June 1983.

Guindon, R., H. Krasner, and B. Curtis. Breakdowns and Processes During the
Early Activities of Software Design by Professionals. pages 65-82 in Empirical
Studies of Programmers (Second Workshop). G. Olson, S. Sheppard, and E.
Soloway, eds. New Haven, CT: 1987.

Harris, D. and Czuchry, A., “Knowledge Based Requirements Assistant”, RADC-
TR-88-205, 1988.

Huff, K. Plan-Based Intelligent Assistance: An Approach to Supporting the
Software Development Process (doctoral dissertation). Department of Computer
and Information Science, University of Massachusetts, September, 1989.

Huff, K. Representing Processes as Plans to Achieve Goals (presentation).
Software Process Symposium. Washington, DC: September 17-18, 1990.

Information Sciences Institute, “Common Lisp Framework and Formalized

System Development chapters in 1985 Annual Technical Report” , December
1986, ISI Technical Report: ISI/SR-86-170.

7-2

Jagadish, H.V. and Qian, X., “Integrity Maintenance in an Object-Oriented
Database”, Proceedings of the 18tk VLDB Conference, 1992.

Johnson, W. Lewis. Overview of the Knowledge Based Specification Assistant.
Proceedings of the 2nd KBSA Conference. August, 1987.

Johnson, W. Lewis, et al., “The Knowledge-Based Specification Assistant, Final
Report”, Rome Air Development Center, Contract No. F30602-85-C-0221, 1988a.

Johnson, W. Lewis, and Yue, K., “An Integrated Specification Development
Framework”, Proceedings of the 3rd Knowledge-Based Software Assistant
Conference”, 1988b.

Johnson, W. Lewis, and M. Feather. Building Evolution Transformation Libraries.
Proceedings of the 4th Annual Knowledge Based Software Assistant Conference.
September, 1989.

Johnson, W., and M. Feather. Using Evolution Transformations to Construct
Specifications. in Lowry, M. and R. Mccartney, eds. Automating Software
Design. AAAI Press: 1990.

Johnson, W. Lewis. Personal Communication on Partial Specification. August,
1990.

Johnson, Lewis, and Harris, Dave, “Requirements Analysis Using Aries: Themes
and Examples”, Proceedings of the 5th Annual Knowledge Based Software
Assistant Conference. September, 1990.

Jullig, R. Progress on the Project Management Assistant. Proceedings of the 4th
Annual Knowledge Based Software Assistant Conference. September, 1989.

Jullig, R., et al. KBSA Project Management Assistant. RADC-TR-87-78. July, 1987.
Jullig, R., M. Daum, and P. Ladkin. “Approaches to Planning in the Project
Management Assistant.” in Proceedings of the 3rd Annual Knowledge-Based

Software Assistant Conference. Utica, NY: 1988.

Kaiser, G., P. Feiler, and S. Popovich. Intelligent Assistance for Software
Development and Maintenance. IEEE Software (May 1988).

Kaiser, G.E., Barghouti, N.S,, Feiler, P.H. and Schwanke, RW., “Database

Support for Knowledge-Based Engineering Environments”, IEEE Expert,
Summer 1988b.

7-3

Karr, M. and Holloway, G.H., “Beyond the Read-Eval Loop: Architecture of the
E-L Environment”, Unpublished paper from Software Options Inc., August 1989.

Karr, Michael, “Transaction Graphs: A Sketch Formalism for Activity
Coordination”, Rome Laboratory Technical Report, RADC-TR-90-347, December,
1990.

Kellner, M. and G. Hansen. Software Process Modeling. Technical Report
CMU/SEI-88-TR-9 (May, 1988).

Kotik, G. and L. Markosian. KBSA for Automated Software Analysis, Test
Generation, and Management. Proceedings of the 4th Annual Knowledge Based
Software Assistant Conference. September, 1989.

Kozaczynski, W., and J. Ning. SRE: A Knowledge-Based Environment for Large-
Scale Software Re-engineering Activities. Proceedings of the 11th International
Conference on Software Engineering. May, 1989.

Larson, A., Kimball, J., Clark, J. and Schrag, B., “KBSA Framework Final Report”,
RADC Technical Report, RADC-TR-90-349, December 1990.

MacLean, R. Enaction Formalisms (session summary). Proceedings of the 4th
International Software Process Workshop, pages 11-13. Moreionhampstead,
Devon, UK: 1988.

Martin, J. and C McClure, Software Maintenance: The Problem and its Solution.
Prentice-Hall. Englewood Cliffs, NJ: 1983.

Mi, P. and W. Scacchi. A Knowledge-Based Environment for Modeling and
Simulating Software Engineering Processes. IEEE Transactions on Knowledge
and Data Engineering 2(3): 283-294 (September 1990).

Mui, C,, and M. DeBellis. KBSA Technology Transfer: An Industry Perspective.
Proceedings of the 4th Annual Knowledge Based Software Assistant Conference.
September, 1989.

National Institute of Standards and Technology, “Reference Model for
Frameworks of Software Engineering Environments”, NIST Special Publication
500-201, December, 1991.

Newcomb, P. Knowledge-Based Reverse Engineering for Re-engineering and

Reuse. Proceedings of the 4th Annual Knowledge Based Software Assistant
Conference. September, 1989.

7-4

Osterweil, L. “Software Processes Are Software Too.” Proceedings of the Ninth
International Conference on Software Engineering, pages 2-13. Washington, DC:
1987.

Perry, D. Problems of Scale and Process Models. Proceedings of the 4th
International Software Process Workshop, pages 126-129. Moretonhampstead,
Devon, UK: 1988.

Ramesh, B. and Dhar, V., “Representation and Maintenance of Process
Knowledge for Large Scale Systems Development”, in Selfridge, P.G., ed.,,
Proceedings of the Sixth Annuai Knowledge-Based Software Engineering
Conference. Syracuse, NY: 1991.

Reasoning Systems Inc., “Refine User’s Guide”, Palo Alto, California,
June 15, 1986.

Rogers, E. The Diffusion of Innovation. Free Press: NY, 1983.

Sasso, W.C. Motivating Adoption of KBSA: Issues, Arguments, and Strategies. in
Selfridge, P.G., ed., Proceedings of the Sixth Annual Knowledge-Based Software

Engineering Conference. Syracuse, NY: 1991.

Sasso, W. and DeBellis, M., “A Software Development Process Model for the
KBSA Concept Demonstration System”, Proceedings of the Sixth Annual

Knowledge-Based Software Engineering Conference. Syracuse, NY: 1990.

Smith, D., “KIDS: A Semiautomatic Program Development System”, IEEE
Transactions of Software Engineering, Vol 16, No. 9., September 1990.

Smith, D. “Development Assistant Final Report”, Rome Laboratory Technical
Report, KES.U.91.7, July 25, 1991.

Swaminathan, Kishore, “TAO: A Domain-Independent Approach to Information
Extraction from Large Formatted Documents”, Proceedings of the DARPA
Document Understanding Workshop, Palo Alto, CA, May 1992.

Williams, Gerald B., and Jay J. Myers. Exploiting Language Metamodel
Correspondences to Provide Paraphrasing Capabilities for the Concept
Demonstration Project. Proceedings of the 5th Annual Knowledge Based
Software Assistant Conference. September, 1990.

Williams, M. What makes RABBIT run? International Journal of Man-Machine
Studies. 21:333-352. 1984.

Winograd, T. and F. Flores. Understanding Computers and Cognition. Addison-
Wesley. Reading, MA: 1987.

7-5

Appendix A:
Technology Transfer Survey Results

As of September 30, 1992, nine organizations had acquired KBSA Concept Demo
licenses and ten other licenses were in process. To gauge the effectiveness of the
Concept Demo with respect to its technology transfer objectives, we conducted a
survey of these organizations to learn about the licensees’ experiences. Similarly,
we conducted a survey to understand what issues had slowed the completion of
the licensing process in the organizations that had not completed the licensing
process.

A.l. Feedback from Licensees

Of the nine licensees, we received responses from seven (78% response rate).
These organizations are identified using the following coding scheme:

Code Organization Description CD Training?
L1 DoD Graduate Institute (U.S.) Yes
L2 Non-profit Analysis AI Research Center (U.S.) No
I3 Industrial (Petroleum Services) CS Center (U.S.) No
L4 Industrial (Systems) Development Group (U.S.) No
L5 Industrial (Telecom) R&D Center (U.S.) Yes
L6 University Computer Science Dept (Middle East) No
L7 Federal (Non-DoD) Technology Institute No

Two licensees did not respond: a non-profit research center (U.S.) and an
industrial (defense) software technology group (U.S.).

1. Were you able to access and install the Concept Demo successfully? (If not,
please describe the nature of any problems.)

L1-1: T had no problem installing the system after using ftp to get it.

L2-1: Yes, we had one problem with certain windows coming up which was fixed
via (re::reset-resource ri::*small-text-window-resource*) (on Andersen’s
advice).

L3-1: Bad News. I was planning on putting one of our Summer students to work
on playing the demos, but then when the time came we found something
more urgent for her to do. So ... we have not even installed the SW. I still
hope to do it next time I have inexpensive labor around.

L4-1: The CD ir..talled correctly the first time. It was relatively easy, but I'm

familiar with the commands you used. We already had X11 and Refinery
installed, so that helped.

A-1

L5-1: Yes.

Lé6-1: The disk I ordered has been installed yesterday, and I can finally try to
install the KBSA CD, for which I got a license in May [5 months previous].
However, the pub/KBSA directory no longer exists ... Please send me new
ftp instructions ...

L7-1: We have not yet accessed or installed the Concept Demo. The group that
was interested in evaluating KBSA technology has been reassigned to
perform another study, but expects to return to KBSA in another several
months. At that point, we plan to instail the technology. Please keep us
informed of training programs and later releases.

2. Did you try to perform the pre-defined demonstration scenarios? If so, were
you able to do so successfully? What types of problems (if any) did you
encounter?

L1-2: We had no major problems with the scenarios. Occasionally, for reasons we
could not figure out, the system would stall requiring getting out of the
Concept Demo. This was very infrequent and could have been due to
problems unrelated to CD.

L2-2: We eventually performed them all. At first we were slowed by the window
resource problem. We also had problems running the simulation scenario
which seemed to freeze after we had moved around a few of the windows
(despite being warned against this :-)).

L4-2: We did run some of the scenarios. A few data input problems cropped up.
One case was were we tried to create a new knowledge-base module before
the directory existed, which was unsuccessful. Another was the use of
decimal points in the Browsing scenario when trying to change the spacing
for the depth of a tree. One thing I found perplexing was that the user
manual specifies how to start a scenario, and how to end it, considering the
comment that Restore-a-scenario is to be used for a single demonstration.
Moving from one scenario to another was not well explained, and shutting
down the scenario with kill-refine seems to be overreacting.

L5-2: Yes, no problems.

3. Did you demonstrate the Concept Demo to others? If so, please give us a
guesstimate of the number of people who have seen your demos and the nature
of their work (e.g., SE practitioners, SE researchers, students, technical managers,
high-level executives, ...). Can you say anything about the reactions of the
audience to the demos?

A-2

L1-3: I and some of my students have demonstrated CD to over 100 people
(mostly students and about 5 - 10 faculty). The audience has been very
impressed with the system. The audience had very limited exposure to
concepts of KBSE and the demos created a lot of interest about KBSE. Many
commended the quality and stability of the implementation, given that CD
is a demonstration system. I expect to have about 5 students working with
the system, extending its functionalities or developing models using it.

L2-3: No, though not for lack of perceived interest. We had planned demos for
two different groups, but schedules being what they are the demos were

bumped.

L4-3: I demonstrated it to X, which was more of a team effort the first time. He
seemed pleased with it and wanted to work with it more extensively. Most
recently I demonstrated it to about 5 SE research managers, after talking
about it to a group of about 10 SE research managers. The 5 out of 10 group
appeared to be interested in it, but losing half the audience was annoying.
The only interesting query was a question about what OOA/OOD
methodology [is] supported by the CDS. What's your reply to that?

L5-3: Not yet, planned for Q1793.

4. Have you tried to uses the Concept Demo functionality outside of the pre-
defined scenarios? Please briefly describe any such experiences.

L1-4: We have tried to develop examples using CD, but this work has not been
extensive.

L2-4: No.
L4-4: Not really.
L5-4: Not yet.

5. Have you attempted to build software extending the Concept Demo
functionality? Please briefly describe any such experiences.

L1-5: We are working on incorporating a model of rationale (REMAP) extending
the Semantic Network functionality of CD. The early attempts seem to
suggest thai we will be successful in our efforts.

L2-5: No.

L4-5: No.

L5-5: No.

A-3

6. Have you contacted Andersen Consulting to request assistance with the
Concept Demo? If so, please comment on how prompt, adequate, and effective
the response you received was.

L1-6: Andersen (specifically Bill Sasso and Mike DeBellis) have been more than
willing to help. We greatly appreciate their help with acquiring CD,
participating in the training sessions, as well as extending CD.

L2-6: Andersen provided us with the “reset-resource” fix.
L4-6: No need to request assistance, yet.
L5-6: No.

7. Please feel free to make any additional suggestions or comments regarding
your experience with the Concept Demo.

L1-7: Please revise the manual to make it more readable. Also, provide a short
summary of what each scenario is trying to do and what the starting point
is and what the ending point is. As some scenarios have overlaps, unless
this information is clearly stated, the user may be confused “repeating” the
same steps from a previous scenario without a clear understanding of the
concept being demonstrated. [paragraph] The CD has provided us with an
opportunity to expose the Navy and other DoD officers in our Information
Technology Management curriculum to the exciting field of KBSE. A
demonstration accomplishes much more than what several lectures can not
accomplish. We are glad to be able to bring awareness of the technology to
the “right” audience. [paragraph] It has been a pleasure working with the
system and Andersen. Look forward to more of the same ...

L2-7: I thought the Concept Demo showed its pieces well enough, but there were
a lot of features and capabilities in the CD and I did not get a good sense of
how they all played together. To some extent, the scenarios were disjoint. I
did not attend the CD training session, so maybe I missed out on this, but I
would have liked a level of description of the CD one level more abstract
than the user’s manual. I know there were a number of papers about the
CD but these seem to have mixed the vision of the CD with the actual
implementation. Maybe what I am looking for is a combination high-level
design document for the CD (so that I could start to understand how the
pieces fit together) and a CD methodology document. I am not sure these
observations are completely fair to the CD as this information is probably
available from a combination of sources, but still I had trouble seeing how
everything fit together.

A.2 Feedback from those who have not completed the license process

A-4

Of the ten organizations currently in the licensing process, we received feedback
from eight of them (80% response rate). These organizations are coded as

follows:
Code Organization Description Refine?
N1 University Research Center (U.S.) No
N2 University Research Center (U.S.) No
N3 University Research Center (FDR) No
N4 DoD Training Center No
N5 DoD Research Agency No
N6 University Research Center (U.K.) No
N7 Industrial (Telecom) Technology Center (US) No
N8 Non-Profit Research Institute (U.S.) No

Two in-licensing-process organizations did not respond to the survey: a
university computer science group (FDR) and a non-profit software engineering
center (U.S.).

A representative of N5 attended the Concept Demo training program, but is no
longer involved in that organization’s Concept Demo acquisition efforts. None of
the other in-license-process organizations have been representedat Concept
Demo training programs.

1. Has your organization decided not to complete the KBSA Concept Demo
licensing process, or is the process simply on “hold” for a while?

N1-1:

N2-1:

N3-1:

... was the primary motivator for obtaining the system. I have since left
N1 and am now at the University of X. The process is on hold for me and is
probably dead at N1. I am proposing a new course in this department to
deal specifically with knowledge-based software engineering, although it
will be a year or so before I can teach it.

We are on hold, pending availability of funds to acquire the necessary
software licenses from KBSA-CD contributors (i.e., we don’t have the
money in any of our contracts at this time).

... we strongly plan to install the Concept Demo here, especially after I saw
it in Monterey and X (on of my research associates) at KBSE. In fact, we are
planning to use it in a class we teach jointly in the spring. The problem we
was (a) the Refine license which took a while to clear, (b) a decision on
whether to buy a full Common Lisp license or just go with the special offer
(we have been Prolog users so far), and (c) the slow bureaucracy in our
university which has to process the official orders. But it will come!

N4-1: On hold, due to need for purchase of enabling software.

N5-1: For reasons I don’t fully understand, negotiations concerning licensing
(which I understand needed to be completed prior to demo) were never
completed. The bottom line is that none of [us] here have seen the demo.

N8-1. The process is “on hold” due to the need to acquire Software Refinery.

2. If you have decided not to complete the licensing process, please describe any
factors that led to that decision, especially in terms of any aspects that you
believe Andersen or Rome Lab could modify.

N1-2: The decision not to proceed at N1 was motivated primarily be the need for
the Refine license. Partially cost and partially just having to deal with one
more group. At this point, I feel it is a dead issue at N1 because no one
there is as interested in KBSE as I was.

N6-2: Our interest in the Concept Demo was due to the fact that we are doing
research into automated software engineering tools and we wanted to see
what the Concept Demo was all about in relation to our work. When it
became clear that it required other pieces of software like Refine, which we
weren’t interested in buying for a one-off demo, it began to sound like
much more trouble than it was worth to check it out.

N7-2: When I originally looked at the specs for KBSA, I saw another license (I
forget for what) which we would have had to procure for a nontrivial
amount of money. I did not see a business case which I could make for
spending that mount, so I didn’t proceed with licensing KBSA.

3. If the process is simply on “hold,” please describe the nature or causes of the
hold, especially any of those causes that you believe Andersen or Rome Lab
could modify.

N1-3: As far as my work at the University of X is concerned, things are on hold
until I get settled in. As I noted earlier, I want to do a class on KBSE
techniques, but must get the course approved and on the books. This
should not be a problem, but will take some time. My current research area
involves case-based reasoning and formal specifications, thus I consider the
Concept Demo important to my research as well. Again, it will just take
some time before I get started back up here.

N2-3: At this time, there is interest at the School of Business and at the CS dept at
N2 to get a copy of KBSA-CD for experimentation. If the KBSA-CD
package (including required platform software, e.g., Franz CL needed to
run Kestrel /Reasoning Systems software) were available to universities at

A-6

“no cost” we would seek to get a copy immediately. But these days, we do
not have the approximate $1000 in software license money at our disposal.

N8-3. We were informed by Kestrel that we were not eligible for an educational
Refine license, and so have requested funding for a limited use license in
next year’s budget.

Andersen Consulting is aware that at least one large aerospace industry
computer services organization regards the “Additional Consideration” clause in
the Concept Demo license as overly restrictive. This clause requires that — if
Andersen so requests — extensions to the Concept Demo made by the licensee be
licensed to Andersen under terms similar to the terms of the Concept Demo
license. When they pointed this out to us, we responded that this clause was
present in licenses for several other KBSA prototypes (which we believe they
have licensed), and suggested that they propose alternate language. To date, they
have not responded with a proposal fro alternative language.

4. Have you discussed any of these causes/factors with anyone at Andersen
Consulting? If so, how would your characterize the response?

N1-4: I have had no contact with Andersen Consulting.
N2-4: We have had a number of interesting discussions with friends at AC to try
to identify some collaborative projects whose funding would resolve this

resource constraint.

N8-4. Most of my interaction has been with Andersen’s Mike DeBellis; he has
been helpful and generous with his time.

5. Please feel free to make any additional suggestions or comments regarding
your experience with the Concept Demo.

N1-5: I will obtain the Concept Demo if it is at all possible for me to do so, both
for my research and for teaching.

2U.S. GOVERNMENT PRINTING OFFICE: 1393-710-09 3-60766

A-7

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

